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Unit 1

Course Structure

• Matrices over a field: Matric polynomial, eigen values and eigen vectors, minimal polynomial.

1.1 Introduction

You are already aware of matrices and its various properties such as determinants, characteristic polynomials,
eigen values and eigen vectors. We will revisit them in this unit and learn about the minimal polynomial of
matrices and read about the characteristic polynomial, the eigen values and eigen vectors using the information
of the minimal polynomial.

Objectives

After reading this unit, you will be able to

• find the characteristic polynomial of a matrix

• find the eigen values and eigen vectors of a matrix

• learn the various properties of a matrix associated with its eigen vectors and eigen values and also its
characteristic polynomial

• find the minimal polynomial of a matrix

• learn the relationship between minimal and characteristic polynomials of a matrix.

1



UNIT 1.

is a real polynomial, then the matrix polynomial evaluated at A is given as

p(A) = a0I + a1A+ · · ·+ anA
n

where, I is the n-th order identity matrix. Next we will move on to the definition of the characteristic polyno-
mials.

1.2.1 Characteristic Polynomials

Before stating the definition of characteristic polynomials, we will first define the eigen values and eigen
vectors of a matrix.

Definition 1.2.1. Let A be an n×n matrix over the field R. Then, a real number λ is said to be an eigen value
of the matrix if there exists a non-zero vector v ∈ Rn such that

Av = λv (1.2.1)

holds. Then the non-zero vector v is said to be the eigen vector corresponding to the eigen value λ.

The equation (1.2.1) reduces to

(A− λI)v = 0

which is an n-th order linear equation in n variables. This equation has non-trivial solution if

det(A λI) = 0−

The above equation is called the characteristic equation (polynomial) for the matrix A. The roots of the
characteristic polynomials give us the eigen values of the matrix. It should be noted that the characteristic
polynomial is a monic polynomial which has exactly degree n.

Consider the matrix

0
A =

[
1

−1 0

]

1.2 Matric Polynomials

Let F be a field and A be a matrix with entries from the field F . In this chapter, we are concerned mainly
with the matrix polynomials, viz., the characteristic and minimal polynomials. Here, we will consider the
underlying field to be either R or C. Let A be an n×n matrix over the field R. Then, a matrix polynomial for
the matrix A is a polynomial with real coefficients and the variables as the matrix A, that is, if

p(x) = a0 + a1x+ · · ·+ anx
n

2



1.2. MATRIC POLYNOMIALS

Definition 1.2.3. Let A and B be two n × n matrices. Then A and B are said to be similar if there exists an
invertible matrix P of order n such that

A = P−1BP.

Theorem 1.2.4. Similar matrices have the same characteristic polynomial.

Proof. Let A and B be two n× n similar matrices. Then there exists an invertible matrix P such that

A = P−1BP.

Then,

det(A− λI) = det(P−1BP − λI)

= det(P−1BP − λP−1IP )

= det(P−1(B − λI)P )

= detP−1.det(B − λI).detP

= det(B − λI).

For any real number λ, the equation det(A− λI) = 0 gives

[
−λ 1

]
= 0,−1 −λ

or, λ2 + 1 = 0,

or, λ = i.

±

So, the characteristic equation is λ2 + 1 = 0 which has no roots in the real field, but has roots ±i in the
complex field. So, A has eigen values in the complex field but no eigen value in the real field.

Eigen values can also be defined as

Definition 1.2.2. If A is an n × n matrix over a field F , then c ∈ F is called an eigen value of A in F if the
matrix (A− cI) is singular.

Eigen values are often called characteristic roots, latent roots, eigenvalues, proper values, or spectral values
in several roots. We shall call them eigen values throughout. We will now discuss certain properties of
characteristic polynomials.

3



UNIT 1.

We can check a simple fact that the set of all annihilating polynomials of a matrix A forms an ideal I of the
polynomial ring F [x] (verify). Now, since F is a field, so the ideal I is necessarily a principal ideal of F [x].
It means that there exists a polynomial m(x) ∈ I such that I = ⟨m(x)⟩, that is I is generated by m(x), that
is, each element f(x) of I can be written in the form f(x) = p(x)m(x), where, p(x) ∈ F [x]. This m(x) is
called the minimal polynomial of the matrix A. We formally define the minimal polynomial of a matrix as
follows.

Definition 1.2.6. Let A be an n × n matrix over a field F . Then the minimal polynomial m(x) of A is the
unique monic generator of the ideal of all polynomials over F which annihilate A.

Thus, we arrive at the following theorem.

Theorem 1.2.7. Let A be an n × n matrix over a field F and m(x) be the minimal polynomial of A. Then,
m(x) divides each of the annihilating polynomial of A.

̸ ̸

̸

̸

We will now move on to define the minimal polynomial of a matrix. Let us start with the following example.

Consider the following matrix

A =


3 1 −12 2 −1
2 2 0



Then the characteristic polynomial for A is



∣∣∣3− λ 1 −1∣∣ 2 2− λ −1
2 2 −λ

∣∣∣∣
λ3

∣ = 0

which gives − 5λ2 + 8λ − 4 = (λ − 1)(

∣
λ − 2)2 = 0. Thus,

∣
1 and 2 are the eigen values of A. Find the

corresponding eigen vectors!

So the characteristic polynomial for A is f(λ) = λ3 − 5λ2 + 8λ− 4 = (λ− 1)(λ− 2)2 = 0. It is obvious
that for any other polynomial g(x) in R[x] (since in this case the underlying field is R. Otherwise we would
have taken F [x].), we would have

h(x) = g(x)f(x) = 0,

or, writing it as
h(A) = g(A)f(A) = 0,

we can say that the polynomial h(x) annihilates A. All such polynomials h(x) ∈ R[x] for which h(A) = 0
are called the annihilating polynomial of A. We formally define annihilating polynomial as follows.

Definition 1.2.5. Let A be an n × n matrix over a field F . Then a polynomial f(x) ∈ F [x] is called an
Annihilating Polynomial of A if f(A) = 0. By the definition, we can at once say that the characteristic
polynomial of A is an annihilating polynomial of A.

4



1.2. MATRIC POLYNOMIALS

2. m(x) = (x− 1)(x− 2).

One may check whether (A − I)(A − 2I) = 0. If yes, then the second option is our required minimal
polynomial. If not, then the characteristic polynomial and minimal polynomials coincide in this case.

There are various ways to find the minimal polynomial of a matrix (by finding the eigen vectors, rank, etc.
of the matrix). We will deal with it in details in the upcoming units.

Example 1.2.9. Consider the matrix of the previous example.

3
A =


1 −12 2 −1

2 2 0


We have seen that the characteristic polynomial of the matrix is

f(x) = (x 1)(x 2)2− −

Now, since minimal polynomial divides characteristic polynomial and both have same roots (excepting multi-
plicities), so the most probable candidates for the minimal polynomial are

1. m(x) = (x− 1)(x− 2)2, or,

Theorem 1.2.8. Let A be an n × n matrix over a field F . Then the characteristic and minimal polynomials
for A have the same roots, except for multiplicities.

Proof. Let m be the minimal polynomial for A. Let c be a scalar. We want to show that m(c) = 0 if and only
if c is an eigen value. First suppose that m(c) = 0. Then

p(x) = (x c)q(x),−

where, q is a polynomial in F such that deg q < deg p. By the definition of minimal polynomial, we can say
that q(A) = 0. Now, choose a vector β such that q(A)β = 0. Let α = q(A)β. Then,

0 = m(A)β

= (A− cI)q(A)β

= (A− cI)α

and thus, α is an eigen value of A.

Now, suppose that c is an eigen value of A, say Aα = cα for some α = 0. So, by the properties of matrices,
we can say that

m(A)α = m(c)α.

Since m(A) = 0 and α = 0, we have, m(c) = 0. Hence c is a root of the minimal polynomial of A. Thus the
theorem.
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Exercise 1.2.10. 1. Find a 3× 3 matrix whose minimal polynomial is x2.

2. Find the minimal polynomial and eigen values of the following matrix.

A =


0 1 0 11 0 1 00 1 0 1


.

1 0 1 0


3. Let a, b, c be elements of a filed F , and let A be the following 3× 3 matrix over F :

A =


0 0 c
1 0 b
0 1 a

  .

Prove that the characteristic polynomial for A is x3 − ax2 − bx − c and that this is also the minimal
polynomial for A.

UNIT 1.
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Unit 2

Course Structure

• Linear Transformation (L.T.): Brief overview of L.T., Rank and Nullity of L.T.

2.1 Introduction

We are already familiar with the idea of linear transformations from our undergraduate times. This unit helps to
recapitulate those earlier notions and introduces certain new ideas on the algebra of linear transformations and
the ideas of dual spaces of a vector space. We will learn of these things in detail. We will start with formally
defining linear transformations, giving a few examples and stating the old theorems with their applications.

Objectives

After reading this unit, you will be able to

• recapitulate the basic notions of a linear transformation on a vector space

• solve the basic problems related to the representation of a linear transformation (LT) by matrices and
change them with basis changes

• solve sums based on the Rank-Nullity theorem

• form the idea of the space of linear transformations from a particular vector space to another and discuss
its properties

• form an idea about singular and non-singular linear transformations and conditions for being one

2.2 Linear Transformations

Definition 2.2.1. Let V and W be two vector spaces over the same field F . A linear transformation from V
to W is a function that satisfies the following condition

T (ca+ db) = cT (a) + dT (b)

for all c and d ∈ F and a, b in V .

7



UNIT 2.

A simple calculation yields that T (0) = 0 always (can you show it?). Thus, for a simple intuitive example,
if we consider the vector space R2 over the field R, then we can say that any function T from R to itself is a
LT if it takes a line passing through the origin to a line passing through the origin. Let us see the following
examples.

Example 2.2.2. 1. Let T : R2 → R2 be a function defined as T (v) = v2. Then clearly, T takes the line
y = x onto the curve y = x2. Hence, T is not a linear transformation on R2.

2. Consider another example of T on the same vector space R2 where T is defined as

T (v) = v + α

where α is a non-zero element of R2. Thus, we can see that T takes straight lines onto straight lines but
does not take origin to itself. Hence, T is not a LT in this case too.

The above example illustrates a few examples of functions which are not LT. Below given are certain
standard examples of a LT which are frequently used.

Example 2.2.3. 1. If V is any vector space, the identity transformation I , defined as I(v) = v, is a linear
transformation from V into V .

2. The zero transformation 0 on a vector space V , defined as 0(v) = 0 is also a linear transformation.

Certain other examples include

Example 2.2.4. 1. Let V be the vector space consisting of all continuous functions on the set of real
numbers, over the field of reals. Then the integral operator defined as

(T (f))(x) =

∫ x

0
f(t)dt, f ∈ V,

is a LT on V .
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2.2. LINEAR TRANSFORMATIONS

2. Let V be the vector space consisting of all polynomials on the set of real numbers, over the field of
reals. Then the differential operator defined as

(Df)(x) = c1 + 2c2x+ · · ·+ kckx
k−1

where, f(x) = c0 + c1x+ · · ·+ ckx
k ∈ V

is a LT on V .

3. Let V be the vector space consisting of all convergent real sequences over the field of reals. Then the
limit operator defined as

L(x) = lim
n→∞

xn, x = {xn} ∈ V,

is a LT on V .

Theorem 2.2.5. Let V be a finite dimensional vector space and {a1, a2, . . . an} be a basis of V and {b1, b2, . . . bn}
be any set of vectors (not necessarily distinct) in another vector space W under the same field F . Then, there
exists a unique LT T from V into W such that

T (ai) = bi, i = 1(1)n.

Proof. Since {a1, a2, . . . an} is a basis of V , so for any v ∈ V , there exists unique scalars c1, c2, . . . cn of F
such that

v = c1a1 + · · ·+ cnan.

Then we define T as
T (v) = c1b1 + · · ·+ cnbn.

Then T is a well-defined rule for associating with each vector v of V to a vector T (v) in W . From the
definition, we easily get

T (ai) = bi, i = 1(1)n.

To see that T is linear, let us consider another vector w of V as

w = d1a1 + · · ·+ dnan

and two other scalars x and y in F . Now,

xv + yw = xc1a1 + · · ·+ xcnan + yd1a1 + · · ·+ ydnan

= (xc1 + yd1)a1 + · · · (xcn + ydn)an.

Then,

T (xv + yw) = (xc1 + yd1)b1 + · · · (xcn + ydn)bn

= xc1b1 + · · ·+ xcnbn + yd1b1 + · · ·+ ydnbn

= x(c1b1 + · · ·+ cnbn) + y(d1b1 + · · ·+ dnbn)

= xT (v) + yT (w).

Hence, T is linear. Now, let U be another LT from V into W such that U(ai) = bi, i = 1(1)n, then for any
vector v =

∑n
i=1 xiai, we have

U(v) = U

(
n∑

i=1

xiai

)

=
n∑

i=1

xiU(ai)

=
n∑

i=1

xibi.

9



UNIT 2.

so that U is exactly the same as the rule as T is defined. Hence, T is unique.

Example 2.2.6. The vectors u = (1, 2), v = (3, 4) are linearly independent and therefore form a basis
for R2. Then, by the previous theorem, there exists a LT T from R2 to R2 such that T (u) = (3, 2, 1) and
T (v) = (6, 5, 4). Then, we must be able to find T (1, 0) such that

(1, 0) = cu+ dv = c(1, 2) + d(3, 4)

which gives c = −2 and d = 1. Thus,

T (1, 0) = −2(3, 2, 1) + (6, 5, 4)

= (0, 1, 2).

There are other interesting subspaces associated with a LT as we will define now.

Definition 2.2.7. Let V and W be vector spaces over the field and let T be a LT from V into W . Then the
Null Space of T is the set of all vectors v in V such that T (v) = 0. This is clearly a subset of V because

1. T (0) = 0, so that N is non-empty;

2. if T (v) = T (w) = 0, then

T (cv + dw) = cT (v) + dT (w) = c0 + 0 = 0

so that cv+dw also belongs to the null space. The dimension of the null space of T is called the Nullity
of T .

Definition 2.2.8. The range of T is a subspace of the space W because if a, b in the range of T , then there
exists vectors u and v in V such that T (u) = a and T (v) = b. Then for the scalars x and y, T (xu + yv) =
xT (u) + yT (v) = xa+ yb. Hence, xa+ yb is also in the range T . The dimension of the range of T is called
the Rank of T .

Theorem 2.2.9. A LT T is injective if and only if N = {0}.

Proof. The proof is trivial and has been left as an exercise.

We have the celebrated Rank-Nullity Theorem for Linear Transformations as follows:

Theorem 2.2.10. Let V and W be vector spaces over the field F and let T be a LT from V into W . Suppose
that V is finite-dimensional. Then

Rank(T ) + Nullity(T ) = DimV.

Proof. Let {v1, v2, . . . , vk} be a basis of N , the null space of T . Then, the above basis can be extended to a
basis {v1, v2, . . . , vn} of V . We shall now prove that {T (vk+1), . . . , T (vn)} is a basis for the range of T . The
vectors T (v1), T (v2), . . . , T (vn) certainly span the range of T , and since T (vj) = 0 for j ≤ k, we see that
T (vk+1), . . . , T (vn) span the range of T . To check their independence, suppose that there are scalars ci such
that

n∑
i=k+1

ciT (vi) = 0,

which gives

T

(
n∑

i=k+1

civi

)
= 0

10



2.3. ALGEBRA OF LINEAR TRANSFORMATIONS

and hence, the vector v =
∑n

i=k+1 civi is in the null space of T . Since {v1, v2, . . . , vk} is a basis of N , so v
can be represented as a finite linear combination of them, that is,

n∑
i=k+1

civi =

k∑
i=1

bivi

and hence
k∑

i=1

bivi −
n∑

i=k+1

civi = 0.

Since {v1, v2, . . . , vn} is linearly independent, so we have, b1 = b2 = · · · = bk = ck+1 = · · · = cn = 0.
Thus, we have proved the linear independence of T (vk+1), . . . , T (vn) and hence it is a basis of the range of
T . Thus, when nullity is k, the rank of T is n− k, thus giving us the required result.

Note 2.2.11. We know that any set of vectors with the zero element is always linearly dependent. So, the
basis of the null space of T never contains the zero element. Thus, if N does not contain any element other
than the zero element, then the nullity of T is zero.

The above theorem has huge applications.

Corollary 2.2.12. A LT T is surjective if and only if RankT = dimV .

Proof. Left as exercise.

Exercise 2.2.13. 1. Find the rank and nullity of the following linear transformations:

a. T (x, y, z) = (x− y, y − z, z − x).

b. T (x, y, z) = (2x, y, 0).

c. T (x, y, z) = (2x+ 3z, 4z, 5y − z).

2. Let T be a vector space and T a linear transformation from V to V . Prove that the following two
statements are equivalent.

a. The intersection of the range of T and the null space of T is the zero subspace of V .

b. If T (T (v)) = 0, then T (v) = 0.

3. Describe explicitly a LT from R3 to R2 for which the range space is spanned by the vectors (1, 0,−1)
and (1, 2, 2).

2.3 Algebra Of Linear Transformations

In the study of linear transformations from V to W , it is of fundamental importance that the set of these
transformations inherits a natural vector space structure. The set of linear transformations from a space V into
itself has even more algebraic structure, because ordinary composition of functions provide a "multiplication"
of such transformations. Let us see.
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Theorem 2.3.1. Let V and W be vector spaces over the field F . Let T and U be linear transformations from
V into W . The function T + U defined by

(T + U)(v) = T (v) + U(v)

is a linear transformation from V into W . If c is any scalar, then the function cT defined by

(cT )(v) = cT (v)

is a linear transformation from V into W . The set of all linear transformations from V into W , together with
the addition and scalar multiplication defined above, is a vector space over the field F .

Proof. Suppose T and U are linear transformations from V into W and T + U is defined as given. Then we
first show that T + U is linear. Let c, d ∈ F . Then

(T + U)(cu+ dv) = T (cu+ dv) + U(cu+ dv)

= cT (u) + dT (v) + cU(u) + dU(v)

= c(T (u) + U(u)) + d(T (v) + U(v))

= c(T + U)(u) + d(T + U)(v).

Similarly, we can show that for scalar c ∈ F and some additional scalars x, y, we have

(cT )(xu+ yv) = c(T (xu+ yv))

= c(xT (u) + yT (v))

= cxT (u) + cyT (v)

= x(cT (u)) + y(cT (v))

= x((cT )(u)) + y((cT )(v))

This shows that cT is linear. The zero transformation from V into W is also linear. It is a routine exercise to
check that the other properties of vector space are satisfied similarly. Hence the result.

The vector space thus formed, is denoted by the symbol L(V,W ). We note that L(V,W ) is defined only
when V and W are defined over the same field.

Theorem 2.3.2. Let V be an n-dimensional vector space over the field F , and let W be an m-dimensional
vector space over the field F . Then the space L(V,W ) is finite-dimensional and has dimension mn.

Proof. Let
B = {v1, v2, . . . , vn} C = {w1, w2, . . . , wm}

be ordered bases for V and W , respectively. For each integers (p, q) with 1 ≤ p ≤ m and 1 ≤ q ≤ n, we
define a linear transformation Ep,q from V into W by

Ep,q(vi) = 0, when i ̸= q

= wp, when i = q

or,
Ep,q(vi) = δiqwp.

According to our first theorem, there exists a unique linear transformation from V into W satisfying these
conditions. The claim is that, these mn transformations Ep,q form a basis for L(V,W ). Let T be a linear
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2.3. ALGEBRA OF LINEAR TRANSFORMATIONS

transformation from V into W . For each j, 1 ≤ j ≤ n, let Aij , . . . , Amj be the coordinates of the vector
T (vj) in the ordered basis C, that is,

T (vj) =
m∑
p=1

Apjwp.

We wish to show that

T =
m∑
p=1

n∑
q=1

ApqE
p,q. (2.3.1)

Let U be the linear transformation in the right hand member of the above equation. Then for each j,

U(vj) =
∑
p

∑
q

ApqE
p,q(vj)

=
∑
p

∑
q

Apqδjpwp

=
m∑
p=1

Apjwp

= T (vj).

and consequently U = T . Now, (2.3.1) shows that Ep,q spans L(V,W ). We must prove that they are
independent. But this is clear from what we did above; for, if the transformation

U =
∑
p

∑
q

ApqE
p,q

is the zero transformation, then U(vj) = 0 for each j, so

m∑
p=1

Apjwp = 0

and the independence if wp implies that Apj = 0 for every p and j. Hence the proof.

Theorem 2.3.3. Let V , W and Z be vector spaces over the field F . Let T : V → W and U : W → Z be linear
transformations. Then the composition function UT defined by UT (v) = U(T (v)) is a linear transformation
from V into Z.

Proof. Left as exercise.

Definition 2.3.4. If V is a vector space over a field F , then a linear operator on V is a linear transformation
from V into V .

In the previous theorem, when V = W = Z, and U and T are linear operators on the space V , we see that
the composition UT is again a linear operator on V . The space L(V, V ) "has a multiplication" defined on it
by composition. In this case the operator TU is also defined, and one should note that in general UT ̸= TU ,
that is, UT − TU ̸= 0. We should take special note of the fact that if T is a linear operator on V then we
can compose T with T . We shall use the notation T 2 = TT , and in general, Tn = TT · · ·T (n factors) for
n = 1, 2, . . .. We define T 0 = I if T ̸= 0.

Theorem 2.3.5. Let V be a vector space over the field F ; let U and T1 and T2 be linear operators on V and
let c ∈ F . Then
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1. IU = UI = U ;

2. U(T1 + T2) = UT1 + UT2; (T1 + T2)U = T1U + T2U ;

3. c(UT1) = (cU)T1 = U(cT1).

In everything we have so far discussed, we have left out the invertibility of linear operators. Under what
conditions, does a linear operator admit of an inverse, that is, there exists a linear operator T−1 for which
TT−1 = T−1T = I?

Definition 2.3.6. A LT T from a space V to another space W is said to be invertible if there exists a LT U
such that TU = UT = I . Such function U , if it exists, is unique.

We note that the by the theory of functions, we know that a function is invertible if it is bijective. Thus, by
the rank-nullity theorem, we can say that the dimensions of both the spaces V and W must be the same. Let
us see the following theorem.

Theorem 2.3.7. Let V and W be vector spaces over the field F and let T be a LT from V into W . If T is
invertible, then the function T−1 is also a LT from W onto V .

Proof. When T is bijective, there exists a uniquely determined function T−1 which maps W onto V . To
prove the linearity of T−1, let us take two vectors b1 and b2 in W and two scalars x and y. Let ai = T−1(bi),
i = 1, 2. Then, we have T (ai) = bi for all i. Now, since T is linear,

T (xa1 + ya2) = xT (a1) + yT (a2)

= xb1 + yb2

Thus, xa1 + ya2 is the unique vector in V such that T (xa1 + ya2) = xb1 + yb2 which means that

T−1(xb1 + yb2) = xa1 + ya2 = xT−1(b1) + yT−1(b2)

which shows that T−1 is linear.

Definition 2.3.8. A linear transformation T is said to be non-singular if T (v) = 0 implies that v = 0, that is,
if the null space comprises of only the singleton set {0}. Otherwise, T is said to be singular.

Theorem 2.3.9. Let T be a LT from V into W . Then T is non-singular if and only if T carries each linearly
independent subset of V into a linearly independent subset of W .

Proof. First suppose that T is non-singular. Let S be a linearly independent subset of V . If S = {v1, v2, . . . , vk},
then T (v1), T (v2), . . . , T (vk) are linearly independent, for if

c1T (v1) + c2T (v2) + · · ·+ ckT (vk) = 0

and then
T (c1v1 + c2v2 + · · ·+ ckvk) = 0

and since T is non-singular,
c1v1 + c2v2 + · · ·+ ckvk = 0

from which it follows that each ci = 0 because S is linearly independent set. This shows that the image of S
under T is independent.

Suppose that T carries linearly independent set into linearly independent set. Let a be a non-zero vector in
V . Then the set S consisting of the one vector a is independent. The image of S is the set consisting of the
one vector T (a), and this set is independent. Thus, T (a) ̸= 0, because the set consisting of the zero vector
alone is independent. This shows that the null space of T is the zero subspace, that is, T is non-singular.
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Theorem 2.3.10. Let V and W be finite-dimensional vector spaces over the field F such that dimV =
dimW . If T is a LT from V into W , the following are equivalent:

1. T is invertible.

2. T is non-singular.

3. T is onto.

4. If {v1, v2, . . . , vn} is a basis for V , then {T (v1), T (v2), . . . , T (vn)} is a basis for W .

5. There is some basis {v1, v2, . . . , vn} for V such that {T (v1), T (v2), . . . , T (vn)} is a basis for W .

Proof. Left as exercise

Few Probable Questions

1. Show that there exists a unique linear transformation from a finite-dimensional vector space V into
another vector space W over the same field sending the basis elements {v1, v2, . . . , vn} to another set
of arbitrary vectors {w1, w2, . . . , wn}, not necessarily distinct.

2. State and prove the Rank-Nullity Theorem.

3. Show that the space of linear transformations L(V,W ) from an n-dimensional space V into an m-
dimensional space W is of dimension mn.

4. Show that a non-singular linear transformation takes a basis to a basis.

5. Define non-singular linear transformations. Show that the inverse of a non-singular linear transforma-
tion is also so.
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Unit 3

Course Structure

• Dual space, dual basis, Representation of L.T. by matrices, Change of basis.

3.1 Introduction

In the previous unit we got the idea of the space L(V,W ), where V and W are two vector spaces over the same
field F . Now, one may wonder, what if we replace W by the field F . It is easy to see that F is a 1-dimensional
vector space over itself. So, if we consider L(V, F ), then we can study a new kind of linear transformations
that are called functionals and the particular space is called the dual space of V . We will discuss this space
in details. Also, We have seen simple representation of a linear transformation by means of its definition.
However, as you may recall, linear transformations can also be represented by means of matrices depending
upon the basis of the underlying vector spaces. In this unit, we will have a quick recapitulation of this idea.

Objectives

After reading this unit, you will be able to:

• form an idea about the linear functionals on a vector space V

• define the dual basis on a vector space V

• find the dual basis for the corresponding dual space

• define double dual for a vector space and form the corresponding basis

• recapitulate the idea of matrices representing linear transformations

3.2 Dual Spaces

Definition 3.2.1. If V is a vector space over the field F , a linear transformation f from V into the scalar field
F is called a linear functional on V .

16



3.2. DUAL SPACES

The concept of linear functional is important in the study of finite-dimensional spaces because it helps to
organize and clarify the discussion of subspaces, linear equations, and coordinates.

Example 3.2.2. Let n be a positive integer and F a field. If A is an n × n matrix with entries in F , then the
trace of A is a scalar

trA = A11 +A22 + · · ·+Ann.

Then it is a linear functional on the matrix space Fn×n (verify!)

Example 3.2.3. Let [a, b] be a closed interval on the real line and let C([a, b]) be the space of continuous
real-valued functions on [a, b]. Then

L(g) =

∫ b

a
g(t)dt

defines a linear functional on C([a, b]).

Definition 3.2.4. If V is a vector space, then the collection of all linear functionals on V forms a vector space
L(V, F ) and it is called the Dual Space of V . It is also denoted by V ∗.

From the knowledge of the dimension of the space L(V,W ), we can say that

dimV = dimV ∗.

Let B = {v1, v2, . . . , vn} be a basis for V . Then, by the first theorem of this unit, there exists a unique linear
functional fi on V such that

fi(vj) = δij .

In this way, we can obtain from B, a set of n distinct linear functionals f1, f2, . . . , fn on V . These functionals
are also linearly independent. For, suppose

f =

n∑
i=1

cifi.

Then,

f(vj) =
n∑

i=1

cifi(vj)

=
n∑

i=1

ciδij

= cj .

In particular, if f is the zero functional, f(vj) = 0 for each j and hence the scalars cj are all 0. Now,
f1, f2, . . . , fn are n linearly independent functionals, and since we know that V ∗ has dimension n, it must be
that B∗ = {f1, f2, . . . , fn} is a basis for V ∗. This is called the dual basis of B.

Theorem 3.2.5. Let V be a finite-dimensional vector space over the field F , and let B = {v1, v2, . . . , vn} be
a basis for V . Then there is a unique dual basis B∗ = {f1, f2, . . . , fn} for V ∗ such that fi(vj) = δij . For each
linear functional f on V we have

f =
n∑

i=1

f(vi)fi

and for each vector v in V we have

v =
n∑

i=1

fi(v)vi.

17



UNIT 3.

Proof. The above discussion shows that there i s a unique basis which is dual to the basis B. If f is a linear
functional on V , then f is some linear combination of fi as

f =
n∑

i=1

cifi.

Also we have observed that the scalars cj must be given by cj = f(vj). Similarly, if

v =

n∑
i=1

xivi

is a vector in V , then

fj(v) =

n∑
i=1

xifj(vi)

=

n∑
i=1

xiδij

= xj .

So that the unique expression for v as a linear combination of the vi is

v =

n∑
i=1

fi(v)vi.

Example 3.2.6. Consider R2 with the basis B = {(2, 1), (3, 1)}. Let us find the dual basis B∗.
Let v1 = (2, 1) and v2 = (3, 1). By definition, fi(vj) = δij , i, j = 1, 2. Therefore,

f1(v1) = δ11 = 1 ⇔ f1(2, 1) = 1 ⇔ f1 [2(1, 0) + 1(0, 1)] = 1 ⇔ 21(1, 0) + f1(0, 1) = 1

f1(v2) = δ12 = 0 ⇔ f1(3, 1) = 0 ⇔ f1 [3(1, 0) + 1(0, 1)] = 0 ⇔ 31(1, 0) + f1(0, 1) = 0

Solving the system for f1(1, 0) and f1(0, 1), we get

f1(1, 0) = −1 and f1(0, 1) = 3.

Therefore,
f1(x, y) = xf1(1, 0) + yf1(0, 1) = −x+ 3y.

We can similarly show that
f2(x, y) = xf2(1, 0) + yf2(0, 1) = x− 2y.

Therefore, the dual basis is given by B∗ = {−x+ 3y, x− 2y}.
Now, let us try to check whether the functional f(x, y) = 8x− 7y can be represented in terms of the dual

basis just found. According to the preceding theorem, it should follow the equation below.

f(x, y) = f(v1)f1 + f(v2)f2.

Now, f(v1) = f(2, 1) = 8 · 2− 7 · 1 = 9 and f(v2) = f(3, 1) = 8 · 3− 7 · 1 = 17. Putting the values in the
right hand side of the above equation, we get

f(v1)f1 + f(v2)f2 = 9(−x+ 3y) + 17(x− 2y)

= 8x− 7y

which is the same as f(x, y).
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3.2. DUAL SPACES

Exercise 3.2.7. Let V be the vector space of all polynomial functions p from R to R having degree ≤ 2.
Define three linear functionals on V as follows

f1(p) =

∫ 1

0
p(x)dx, f2(p) =

∫ 2

0
p(x)dx, f3(p) =

∫ −1

0
p(x)dx.

Show that {f1, f2, f3} is a basis of V ∗ by exhibiting the basis of V of which it is the dual.

3.2.1 Double Dual

We saw that V ∗ is a vector space since it satisfies all the axioms of a vector space. So, it is quite tempting to
think whether we can further find the dual of the space V ∗ itself and further continue finding duals beyond
that. The set (V ∗)∗ = V ∗∗ is known as the double dual of V . In other words, V ∗∗ is the set of all linear
transformations ϕ : V ∗ → F .

Let v be a vector of the vector space V . Then v induces a linear functional Lv on V ∗ defined by

Lv(f) = f(v), f ∈ V ∗.

Then Lv is a linear transformation (verify!). Further, if V is finite-dimensional and v ̸= 0, then Lv ̸= 0. In
other words, there exists a linear functional f such that f(v) ̸= 0 (prove it).

Theorem 3.2.8. Let V be a finite-dimensional vector space over the field F . For each vector v ∈ V , define

Lv(f) = f(v), f ∈ V ∗.

Then the mapping v 7→ Lv is an isomorphism of V onto V ∗∗.

Proof. We have left it as an exercise to show that for each v, Lv is linear. Now suppose v1 and v2 are in V
and c ∈ F . Let w = cv1 + v2. Then for each f ∈ V ∗,

Lw(f) = f(w)

= f(cv1 + v2)

= cf(v1) + f(v2)

= cLv1(f) + Lv2(f)

and so

Lw = cLv1 + Lv2 .

This shows that v 7→ Lv is a linear transformation from V into V ∗∗. This transformation is non-singular;
for, according to the remarks above, Lv = 0 if and only if v = 0. Now, v 7→ Lv is a non-singular linear
transformation from V into V ∗∗ and since

dimV ∗∗ = dimV ∗ = dimV.

Thus, by theorem 2.3.10, this transformation is invertible and therefore an isomorphism.
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3.3 Matrix Representation of Linear Transformations

As we have mentioned earlier, linear transformation can be represented by matrices. In fact, a single linear
transformation can give rise to different matrices which are similar. To each matrix, there is a linear trans-
formation, but there may be many matrices corresponding to a single linear transformation, varying with the
change in basis. Let us have an illustration.

Illustration 3.3.1. Let T be a linear transformation from R2 to R2 defined as

T (x, y) = (x− y, y).

Consider the standard ordered basis B = {(1, 0), (0, 1)} of R2. Suppose we are to represent T with respect
to the basis B on both sides. Then the resulting matrix is represented as [T ]B. We find it as follows:

T (1, 0) = (1, 0) = 1(1, 0) + 0(0, 1)

T (0, 1) = (−1, 1) = −1(1, 0) + 1(0, 1)

and the resulting matrix becomes

[T ]B =

[
1 −1
0 1

]
.

Again, if we consider another ordered basis C = {(1, 1), (1, 0)} of R2 as the domain set and the basis B of
the range set. Then we have

T (1, 1) = (0, 1) = 0(1, 0) + 1(0, 1)

T (1, 0) = (1, 0) = 1(1, 0) + 0(0, 1)

and the resulting matrix [T ]BC is given by

[T ]BC =

[
0 1
1 0

]
We have certain theorems in connection to these.

Theorem 3.3.1. Let V and W be finite-dimensional vector spaces with ordered bases B and C respectively,
and let T : V → W a be linear transformation. Then for each v ∈ V , we have

[T (v)]C = [T ]CB[v]B.

Theorem 3.3.2. Let V and W be finite-dimensional vector spaces with ordered bases B and C respectively,
and let T,U : V → W be linear transformations. Then

1. [T + U ]CB = [T ]CB + [U ]CB.

2. [aT ]CB = a[T ]CB for all scalars a.

Theorem 3.3.3. Let U , V , W be finite-dimensional vector spaces with ordered bases A, B, C respectively.
Let T : U → V and S : V → W be linear transformations. Then

[ST ]CA = [S]CB[T ]
B
A.
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3.3. MATRIX REPRESENTATION OF LINEAR TRANSFORMATIONS

The purpose of matrix representation for a linear transformation T is to enable us to analyse T by working
with the matrix, say M . If M is easy to work with, we have gained an advantage; if not, we have no advantage.
Since different bases lead to different matrices, the "right" choice of basis to obtain a simple matrix M , such
as a diagonal matrix, is important. Diagonal matrices are the easiest to work with. For now, we will restrict
our attention to the cases when v = W . But, before going into details, let us check the following.

Let B = {v1, v2, . . . , vn} and C = {w1, w2, . . . , wn} be two bases of a vector space V . Then, for each i,
we have certain scalars pij such that

v1 = p11w1 + p12w2 + · · ·+ p1nwn

v2 = p21w1 + p22w2 + · · ·+ p2nwn

...

vn = pn1w1 + pn2w2 + · · ·+ pnnwn

which gives 
v1
v2
...
vn

 =


p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn



w1

w2
...
wn


Let

P =


p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn


Then P is called the Transition matrix from the basis B to C. This transition matrix is invertible. In fact, if Q
is the transition matrix from the basis C to B, then

Q = P−1.

Now, let us come back to our discussion. We have seen that a linear transformation can have various matrix
representations depending upon the choice of basis. Now, what strikes us is that whether there is certain
relationship between these matrices. We have the following theorem in this direction.

Theorem 3.3.4. Let T : V → V be a linear transformation. Then, any two matrices representing T are
similar.

Exercise 3.3.5. 1. Find the matrix representation of the following linear transformation T : R2 → R2

defined as T (x, y) = (x + 6y, 3x + 4y). Also find the matrix representation of T with respect to the
basis {(2,−1), (1, 1)}.

2. Find the matrix representation of the rotation transformation by an angle π/4 radians counter-clockwise
with respect to the standard basis and the basis {(1, 1), (1, 2)}.

3. Find the matrix representation of T (x, y, z) = (x+ 2y, x+ y + z, z) with respect to the standard basis
and the basis {(1, 1, 0), (0, 1, 1), (1, 0, 1)}.
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Few Probable Questions

1. Find a basis for the dual space of an n-dimensional space V .
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Unit 4

Course Structure

• Diagonalization of matrices

4.1 Introduction

As we have already mentioned in the previous unit, diagonal matrices are the easiest to deal with. And we
have also seen that different bases give rise to different matrices for a linear transformation, so our main aim
is to find a particular basis B for a vector space V , for which a particular linear transformation (or rather, a
linear operator) T , defined on V can be represented as a diagonal matrix. It is not always the case that there
always exists such a basis for which T can be represented as a diagonal matrix. We will study mainly the cases
and circumstances, under which this is possible. And if such basis does not exist, then what are the simplest
possible type of matrix by which we can represent T . These are the various issues that will be addressed in
this unit.

Objectives

After reading this unit, you will be able to

• define the characteristic values and vectors of a linear transformation

• recapitulate the basic notions about minimal and characteristic polynomials of a transformation

• define algebraic and geometric multiplicities of a particular eigen value

• define the eigen spaces of a transformation

• determine the cases when a transformation is diagonalizable

• determine the cases when a transformation is not diagonalizable

• find the necessary and sufficient condition for diagonalizability of a transformation

• learn about the Smith’s Normal form

23
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4.2 Diagonalizability

As we have already mentioned before, diagonalizability is something related to the matrix of a LT being di-
agonal. But, before going into the definition of diagonalizability, let us recollect the general notions of eigen
values and eigen vectors of a matrix.

When we operate the matrix over a vector (v1, v2) of R2, and equate it to a constant multiple of (v1, v2),
we get the system

v1 + 2v2 = cv1

3v2 = cv2

Geometrically speaking, when we take a particular vector (v1, v2) of the xy-plane and operate the matrix on
it, we the resulting vector is a scalar multiple of the original one. That is, the resulting vector is either a
contracted or expanded form of the original vector depending on the value of c. For example, if we take the
vector (1, 1), then the resulting vector will be (3, 3) = 3(1, 1). That is, the particular vector is expanding to
thrice its original value.

Figure 4.2.1: Eigen Values and Eigen Vectors Geometrically

On the other hand, if we operate the matrix over the vector (0, 1), then the resulting vector (2, 3) is not on
the line joining (0, 1) and (2, 3). The vector (1, 1) is called an eigen vector and 3 is the corresponding eigen
value. (0, 1) is not an eigen vector.

To summerize, we say that any matrix corresponds to a particular LT and those vectors which do not change
their direction on the application of the LT are called its eigen vectors and the factor by which it contracts or
expands, is called the corresponding eigen value. We are now in a position to formally define eigen values and
eigen vectors of a matrix.



4.2. DIAGONALIZABILITY

Definition 4.2.1. Let T : V → V be a LT over vector spaces on the field F . Then a non-zero vector v ∈ V
is said to be an eigen value of T if T (v) = cv for some c ∈ F . This c is called the corresponding eigen value
of T .

To find eigen value and eigen vectors of a LT, we generally find so for the corresponding matrix represen-
tations of T . It is independent of the bases since similar matrices have same eigen values.

It is important to note that T may not have any eigen value in the first place. And if V is finite-dimensional,
say having dimension n, then T can have atmost n eigen values. And the eigen vectors can also be seen as the
null space of the transformation T − cI (of course ignoring the zero vector).

Now, our main concern is to check whether a given LT can be represented as a diagonal matrix or not. So,
we are in search of that particular basis of V for which it can be done. If there exists certain basis for which T
can be represented as a diagonal matrix, then T is said to be diagonalizable, otherwise T is non-diagonalizable.

Definition 4.2.2. A linear transformation T : V → V , where V is a finite-dimensional vector space, is
said to be diagonalizable if there exists a basis B = {v1, v2, . . . , vn} for which the corresponding matrix is a
diagonal matrix.

A diagonal matrix is of the form 
c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn

 .

An identity matrix is the most common example of a diagonal matrix. So, if we consider the eigen values
and vectors of a LT T , that is the vectors vi satisfying Tvi = ciIvi, or the non-zero vectors of the null space
T − ciI . The intuitive idea is to break the matrix into diagonal blocks of the form

c1 0 · · · 0
0 c1 · · · 0
...

...
. . .

...
0 0 · · · c1

 ,

the above block being the diagonal block corresponding to the eigen value c1. Thus, if the sum of the size of
the blocks equals the dimension of V , then T stands diagonalized and the corresponding diagonal matrix is

c1 0 0 · · · 0
0 c1 0 · · · 0
0 0 c2 · · · 0
...

...
...

. . .
...

0 0 0 · · · cn

 .

The size of each block is determined by the "size" of the null spaces, that is, dimension of the null spaces, that
is the number of linearly independent eigen vectors spanning each null space. In this way, we come to another
equivalent definition of diagonalizability.

Definition 4.2.3. A linear transformation T : V → V , where V is a finite-dimensional vector space, is said
to be diagonalizable if there exists a basis B = {v1, v2, . . . , vn} comprising of the eigen vectors of T .

Let us illustrate the process.
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Illustration 4.2.1. Let A be an n×n matrix over a filed F . We first find the eigen values using the "traditional"
ways by finding the characteristic polynomial. Let c1, c2, . . . , ck ∈ F be the eigen values of A. We find the
rank of each of the matrices A − ciI and then find out the nullity, that is, dimension of the null space of
A− ciI using the Rank-Nullity theorem, for each i, 1 ≤ i ≤ k. If

∑k
i=1 dim(A− ciI) = n, then the matrix

A is diagonalizable otherwise, if
∑k

i=1 dim(A − ciI) < n, A is non-diagonalizable. For A, there exists a
corresponding linear operator from the vector space Fn to Fn.

Example 4.2.4. Let A be a real 3× 3 matrix

A =

3 1 −1
2 2 −1
2 2 0

 .

Then the characteristic polynomial of A is∣∣∣∣∣∣
x− 3 −1 1
−2 x− 2 1
−2 −2 x

∣∣∣∣∣∣ = (x− 1)(x− 2)2.

Then the eigen values of A are 1 and 2. Suppose that T is the linear operator on R3 which is represented by
A in the standard basis. We will find the rank of the matrices A− I and A− 2I . Now,

A− I =

2 1 −1
2 1 −1
2 2 −1


has clearly rank equals to 2 and hence nullity equals to 3− 2 = 1. Also, the matrix

A− 2I =

1 1 −1
2 0 −1
2 2 −2


has rank 2 and hence nullity 3 − 2 = 1. When we sum up the nullities of these two matrices, we get
1 + 1 = 2 ̸= 3. Thus, A is not diagonalizable. The nullities of the matrices A− I and A− 2I together tell us
that the null space of the above matrices are spanned by one vector space each, that is, there are a maximum of
two distinct linearly independent eigen vectors of A and hence we are unable to find a basis of A containing
the eigen vectors.

Definition 4.2.5. Let T be a linear operator over a finite dimensional vector space V and let c ∈ F be an eigen
value of T . Then the null space of the linear operator T − cI is called the eigen space of the corresponding
eigen value c and the dimension of the eigen space, that is, the nullity of the operator T − cI is called the
geometric multiplicity of c.

It is a routine exercise to check that the eigen spaces form vector subspaces of V and has been left as an
exercise.

Definition 4.2.6. For an eigen value c of a particular operator T , the power to which the factor (x − c) is
raised in the corresponding characteristic polynomial of the matrix representation of T is called the algebraic
multiplicity of c.

Thus, in the previous example, the algebraic multiplicity of 1 and 2 are 1 and 2 respectively and their
corresponding geometric multiplicities are equal to 1 each. We can say that the algebraic multiplicity of an
eigen value if always greater than or equals to its geometric multiplicity. Also, the algebraic multiplicities
of all the eigen values add up to the dimension of the parent vector space and is less than or equal to the
dimension if we consider the geometric multiplicities. When the sum of the geometric multiplicities add up
to the dimension of the vector space, we call the operator to be diagonalizable.
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4.2. DIAGONALIZABILITY

Example 4.2.7. Let T be a linear operator on R3 which is represented in the standard ordered basis by the
matrix

A =

 5 −6 −6
−1 4 2
3 −6 −4

 .

Let us find the characteristic polynomial of A as∣∣∣∣∣∣
x− 5 6 6
1 x− 4 −2
−3 6 x+ 4

∣∣∣∣∣∣ = (x− 2)2(x− 1).

So, 2 and 1 are the eigen values of A with algebraic multiplicities 2 and 1 respectively. We will now find the
algebraic and geometric multiplicities of the eigen values. The two matrices

A− I =

 4 −6 −6
−1 3 2
3 −6 −5


and

A− 2I =

 3 −6 −6
−1 2 2
3 −6 −6

 .

We know that A − I is singular and obviously rank(A − I) ≥ 2 (by Rank-Nullity theorem). Therefore,
rank(A− I) = 2. It is evident that rank(A− 2I) = 1. So, the nullity of the matrices are 1 and 2 respectively
which sum up to 3. Hence, A is diagonalizable and the corresponding diagonal matrix is1 0 0

0 2 0
0 0 2

 .

Lemma 4.2.8. Suppose that T (v) = cv. If f is any polynomial, then f(T )(v) = f(c)v.

Proof. The proof of the lemma is based on the fact that

T 2(v) = T (T (v)) = T (cv) = cT (v) = c2T (v).

We can prove by the principle of mathematical induction that

Tn(v) = cnv.

Hence f(T )(v) = f(c)v, for any polynomial in T .

Lemma 4.2.9. Let T be a linear operator on the finite-dimensional space V . Let c1, c2, . . . , ck be the distinct
characteristic values of T and let Wi be the corresponding eigen spaces. If W = W1 +W2 + · · ·+Wk, then

dimW = dimW1 + dimW2 + · · ·+ dimWk.

In fact, if Bi is an ordered basis of Wi, then B = {B1,B2, . . . ,Bk} is an ordered basis for W .
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Proof. The space W = W1+W2+ · · ·+Wk is the subspace spanned by all of the eigen vectors of T . Usually
when one forms the sum W of subspaces Wi, one expects that dimW < dimW1 +dimW2 + · · ·+dimWk

because of linear relations which may exist between vectors in the various spaces. This lemma states that the
characteristic spaces associated with different characteristic values are independent of one another.

Suppose that (for each i) we have a vector bi in Wi, and assume that

b1 + b2 + · · ·+ bk = 0.

We shall show that bi = 0 for each i. Let f be any polynomial. Since T (bi) = cibi, the preceding lemma tells
us that

0 = f(T )(0)

= f(T )(b1) + f(T )b2 + · · ·+ f(T )bk

= f(c1)b1 + f(c2)b2 + · · ·+ f(ck)bk.

Choose the polynomials f1, f2, . . . , fk such that

fi(cj) = δij = 1, i = j

= 0, i ̸= j.

Then
0 = fi(T )(0) =

∑
j

δijbj = bi.

Now, let Bi be an ordered basis for Wi, and let B be the sequence B = {B1,B2, . . . ,Bk}. Then B spans the
subspace W = W1+W2+ · · ·+Wk. Also, B is a linearly independent sequence of vectors, for the following
reason. Any linear relation between the vectors in B will have the form b1 + b2 + · · · + bk = 0, where bi is
some linear combination of the vectors in Bi. From what we just did, we know that bi = 0 for each i. Since
each Bi is linearly independent, we see that we have only the trivial linear relation between the vectors in
B.

In the course of proving the above lemma, we have proved the following theorem.

Theorem 4.2.10. Eigen vectors corresponding to distinct eigen values are linearly independent.

Can you prove the theorem independently?

Thus, we arrive at the following theorem.

Theorem 4.2.11. Let T be a linear operator on a finite-dimensional space V . Let c1, c2, . . . , ck be distinct
eigen values of T and let Wi be the eigen space of ci. Then the following are equivalent:

1. T is diagonalizable.

2. The characteristic polynomial for T is

f(x) = (x− c1)
d1 . . . (x− ck)

dk ,

where dimWi = di, i = 1(1)k.

3. dimW1 + dimW2 + · · ·+ dimWk = dimV .
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Proof. We have observed that 1 implies 2. If the characteristic polynomial f is the product of linear factors, as
in 2, then d1 + d2 + · · ·+ dk = dimV . For, the sum of the d′is is the degree of the characteristic polynomial,
and that degree is dimV . Thus, 2 implies 3. Now suppose that 3 holds. Then by the previous lemma, we must
have V = W1 +W2 + · · ·+Wk, that is, the eien vectors of T span V .

Let us summerize whatever we have learnt so far.

Let T be a linear operator on an n-dimensional vector space V . If T has n distinct eigen values then it has
n linearly independent eigen vectors which form a basis of V and in that case, T is diagonalizable. If it has
less number of eigen values, then we have to check that whether they fulfil the deficiency by having multiple
eigen vector for a single eigen value so that the number of linearly independent eigen vectors are still n. In
either case, we need to check whether the given operator has n linearly independent eigen vectors or not. We
can also say that T is diagonalizable if and only if the geometric multiplicity and algebraic multiplicity for a
given eigen value coincides.

Exercise 4.2.12. 1. Check whether the following matrices are diagonalizable. If yes, then find its diagonal
form.

i.  −9 4 4
−8 3 4
−16 8 7


ii.  6 −3 −2

4 −1 −2
10 −5 −3


2. Let T be a linear operator on the n-dimensional vector space V , and suppose that T has n distinct eigen

values. Prove that T is diagonalizable.

3. Let V be the vector space of all continuous functions from R to R and let T be the linear operator on V
defined as

T (f(x)) =

∫ x

0
f(t)dt.

Prove that T has no eigen values.

4. Let P2 denote the vector space of all polynomials of degree 2 or less, and let T : P2 → P2 be a linear
operator defined by

T (ax2 + bx+ c) = 2ax+ b.

Check whether T is diagonalizable. If so, find the diagonal matrix.

5. Consider the matrix

A =

[
a −b
b a

]
,

where a and b are real numbers and b ̸= 0. Fince all eigen values of A and determine the corresponding
eigen spaces. Hence check whether A is diagonalizable.

6. Check whether the given matrix is diagonalizable. If yes, find the diagonalized matrix.

A =

[
2 −1
−1 2

]
.
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4.2.1 Minimal Polynomials and Diagonalizability

We have seen in the previous units that minimal polynomials and characteristic polynomials of a matrix (or,
linear operator) has same roots.

So, if T is a diagonalizable linear operator and c1, c2, . . . ck are the distinct eigen values of T . Then it is
easy to see that the minimal polynomial for T is the polynomial

m(x) = (x− c1)(x− c2) . . . (x− ck).

If v is an eigen vector, then one of the operators T − c1I, . . . , T − ckI sends v into 0. Hence

(T − c1I) . . . (T − ckI)(v) = 0,

for every eigen vector v. There is a basis for the underlying space which consists of eigen vectors of T ; hence

m(T ) = (T − c1I) . . . (T − ckI) = 0.

What we have concluded is this. If T is a diagonalizable linear operator, then the minimal polynomial for T is
a product of distinct linear factors. As we shall soon see, that property characterizes diagonalizable operators.

Theorem 4.2.13. Let V be a finite dimensional vector space over the field F and let T be a linear operator
on V . Then T is diagonalizable if and only if the minimal polynomial of T is the product of distinct linear
factors, that is, of the form

m(x) = (x− c1)(x− c2) . . . (x− ck),

where, c1, c2, . . . , ck ∈ F are distinct.

Proof. We have noted earlier that, if T is diagonalizable, its minimal polynomial is a product of distinct linear
factors. To prove the converse, let W be the subspace spanned by all of the eigen vectors of T , and suppose
that W ̸= V . By a previous lemma, there is a vector v not in W and an eigen value cj of T such that the
vector

b = (T − cjI)(v)

lies in W . Since b ∈ W ,
b = b1 + b2 + · · ·+ bk

where T (bi) = cibi, 1 ≤ i ≤ k, and therefore the vector

h(T )(b) = h(c1)(b1) + · · ·+ h(ck)(bk)

is in W , for every polynomial h. Now,

m(x) = (x− cj)q(x),

for some polynomial q. Also,
q − q(cj) = (x− cj)h.

But we have
q(T )(v)− q(cj)(v) = h(T )(T − cjI)(v) = h(T )(b).

But, h(T )(b) ∈ W and since
0 = m(T )(v) = (T − cjI)q(T )(v)

the vector q(T )(v) is in W . Hence q(cj)(v) is in W . Since v is not in W , we have q(cj) = 0. This contradicts
the fact that m has distinct roots. Hence the theorem.
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Example 4.2.14. Let A be a 4× 4 matrix

A =


0 1 0 1
1 0 1 1
0 1 0 1
0 1 0 1

 .

The powers of A are easy to compute

A2 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2



A3 =


0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0


Thus, A3 = 4A, that is, f(x) = x3 − 4x = x(x+ 2)(x− 2), then m(A) = 0. The minimal polynomial of A
must divide f . Minimal polynomial is not of degree 1 since in that case, A would have been a scalar multiple
of I , which is not true. Hence the candidates of minimal polynomial polynomial are f , x(x + 2), x(x − 2),
x2 − 4. The three quadratic polynomials can be eliminated since at a glance, we can see that A2 ≠ 2A,
A2 ≠ −2A, and A2 ̸= 4I . Hence f is the minimal polynomial for A and since f is the product of distinct
linear factors, so A is diagonalizable. Now, we can clearly see that the rank of A is 2 and hence its nullity is
also 4−2 = 2, which means that the eigen space of A−0I has dimension 2 and thus its algebraic multiplicity
will be 2. Thus, the characteristic polynomial is x2(x2− 4). And the matrix A is similar to the diagonal form

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 −2

 .

Exercise 4.2.15. 1. Every matrix A such that A2 = A is similar to a diagonal matrix.

2. Using diagonalizability, compute An, n ∈ N for

A =

[
1 2
2 1

]
.

3. Is every diagonalizable matrix invertible? Justify.

4. Let A be an n× n diagonalizable matrix whose characteristic polynomial is given by

f(x) = x3(x− 1)2(x− 2)5(x+ 2)4.

i. Find the size of the matrix A.

ii. Find the minimal polynomial of A.

iii. Find the dimension of the eigen space for the eigen value 2.

iv. Find the rank of the matrix.
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Few Probable Questions

1. Show that the eigen vectors corresponding to distinct eigen values are linearly independent.

2. State a necessary and sufficient condition for diagonalizability. Check the diagonalizability of the fol-
lowing matrix

A =

1 1 1
1 1 1
1 1 1

 .

3. Let f be the characteristic polynomial of a matrix A over the field R as

f(x) = x2(x− 3)(x+ 4)5.

Also, let A be diagonalizable. Then

(a) Find the minimal polynomial of A.

(b) Find the eigen values along with their algebraic and geometric multiplicities.

(c) Find the diagonalized form of A.

4. Let A be a matrix over the field R whose minimal polynomial is of the form

f(x) = (x2 − 1)(x2 + 1).

(a) Is A diagonalizable over R? Justify.

(b) Is A diagonalizable over the field C? Justify.

Find the eigen values in each case.

5. Let P be a linear operator over R2 defined as

P ((x, y)) = (x, 0).

Show that P is linear. Find the matrix representation of P with respect to the standard basis of R2.
What is the minimal polynomial of P ? Is P diagonalizable?
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Unit 5

Course Structure

• Smith’s normal form, Jordan Canonical forms.

5.1 Introduction

We have seen in the preceding unit that we want to write the matrix of a linear operator in its simplest possible
form, which is possible since the matrix representation of a single linear operator under various bases are
similar. And we have also seen that the diagonal matrix is the simplest possible matrix to work with. We are
always in search of a basis of the underlying vector space for which the corresponding matrix of the linear
operator is diagonal. If such a basis exists, then we are happy and the operator is said to be diagonalizable.
We have seen various circumstances under which an operator is diagonalizable. We are okay with them. But,
what happens if a given operator is not diagonalizable. Can’t we express the operator in a simpler form then?
That is where the other canonical forms come into play. We can certainly express the operators in a simpler
form, which is “almost" a diagonal matrix. One of them is the Jordan Canonical forms, which we shall come
through in this unit. Another way of simplifying a matrix is by changing it into its Smith’s normal form.

Objectives

After reading this unit, you will be able to

• learn about the Smith’s normal form of a matrix

• learn about the Jordan forms and find those for any given matrix or linear operator

5.2 Smith’s Normal Form

The Smith normal form is a normal form that can be defined for any matrix (not necessarily square) with
entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained
from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the
integers are a PID, so one can always calculate the Smith normal form of an integer matrix. We will talk
particularly about the PID Z .

33



UNIT 5.

Definition 5.2.1. Let A be an m × n matrix over Z. We say that A is in Smith Normal form if there are
non-zero a1, a2, . . . , ak ∈ Z such that ai divides ai+1 for i < k such that

A =



a1 0 0 · · · · · · 0
0 a2 0 · · · · · · 0
...

...
. . .

...
0 0 · · · ak · · · 0
...

...
. . .

...
0 0 0 0 · · · 0


Theorem 5.2.2. If A is a matrix with entries in Z, then there are invertible matrices P and Q such that PAQ
is in Smith normal form.

Theorem 5.2.3. Every matrix over Z has Smith Normal form.

In order to find the Smith Normal form of a matrix, we are allowed to use the following operations

1. interchange two rows and columns,

2. multiply a row or column by ±1(which are the invertible elements in Z)

3. add an integer multiple of a row (or column) to another row (or column)

Exercise 5.2.4. Obtain the Smith normal form and rank for

A =

 0 2 −1
−3 8 3
2 −4 −1


over Z.

5.3 Jordan Canonical Forms

We have seen that the diagonal matrices are "easiest" matrix to handle. So we are always in search of a basis
for which a particular linear operator is diagonalizable. But this is not always possible. So we are in search of
the next simplest matrix in which the operator can be represented. And the next "easiest" matrix to deal with
are the triangular matrices. So we come to the Jordan canonical forms, or simply the Jordan forms. The Jordan
Canonical Form is an upper triangular matrix of a particular form called a Jordan matrix representing a linear
operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each non-zero
off-diagonal entry equal to 1, immediately above the main diagonal (on the superdiagonal), and with identical
diagonal entries to the left and below them. Let us check for ourselves. Let A be a matrix as given

A =


5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2

 .
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The eigen values of A are 1, 2, 4, 4 and the dimensions of the eigen space corresponding to each eigen values
are 1, 1, 1 which does not sum up to 4, so A is not-diagonalizable. But A is similar to the matrix below

J =


1 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4

 .

The matrix J is "almost" diagonal and is called the Jordan form of A.

Definition 5.3.1. Let A be an n×n matrix and c be an eigen value of A of algebraic multiplicity, say k. Then
the elementary Jordan block of A corresponding to c, of size k is given by

c 1 0 · · · 0
0 c 1 · · · 0
0 0 c · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · c


.

Then the parent matrix is composed of the elementary Jordan blocks

A =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

 .

The Jordan form of a matrix has the following properties:

1. Given an eigen value cj , the number of elementary Jordan blocks corresponding to cj is equal to the
geometric multiplicity of cj .

2. The sum of the sizes of the Jordan blocks corresponding to an eigen value cj is equal to its algebraic
multiplicity.

3. The maximum size of a Jordan block corresponding to an eigen value cj is equal to its multiplicity in
the minimal polynomial of the parent matrix and there has to be a Jordan block with the maximum size
for cj .

Illustration 5.3.1. 1. Let us be given a matrix

A =

4 0 1
2 3 2
1 0 4

 .

First of all, we calculate the eigen values of A which are 5 and 3. Then find the rank of the matrices
A− 5I and A− 3I which happen to be 2 and 1 respectively and hence the nullity of the corresponding
matrices are 1 and 2 respectively summing up to 3, the dimension of R3. Hence the minimal polynomial
of A is (x− 3)(x− 5) and the Jordan form for A is

J =

5 0 0
0 3 0
0 0 3

 .

Here there are precisely three Jordan blocks, [5], [3], [3].
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2.

A =

1 1 1
0 1 0
0 0 1

 .

Then A has only one eigen value, which is 1 and the rank of A− I is 1, which means that it has nullity
equal to 2 which does not sum up to 3. Since the nullity, that is the geometric multiplicity of 1 is 2, so
there will be two Jordan blocks for 1 and also the maximum size of the Jordan block should be 2. Thus,
the Jordan form for A is

J =

1 0 0
0 1 1
0 0 1

 .

Exercise 5.3.2. 1. Put the matrix

A =

−1 −1 0
0 −1 −2
0 0 −1


into Jordan form.

2. Let A be a 5×5 matrix with characteristic polynomial f(x) = (x−2)3(x+7)2 and minimal polynomial
m = (x− 2)2(x+ 7). What is the Jordan form for A?

3. How many possible ,Jordan forms are there for a 6 × 6 complex matrix with characteristic polynomial
(x+ 2)4(x− 1)2?

4. The differentiation operator on the space of polynomials of degree less than or equal to 3 is represented
in the ’natural’ ordered basis by the matrix 

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

What is the Jordan form of this matrix?

Few Probable Questions

1. Find the Jordan form of the matrix

A =

5 4 2
4 5 2
2 2 2

 .

Show detailed steps.
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Unit 6

Course Structure

• Invariant factors and elementary divisors, Rational (or Natural Normal) form.

6.1 Introduction

There are certain subspaces which remain invariant under a linear operator, that is, the linear operator sends
each element of the subspace to itself. Such subspaces are of primary importance as we shall see that we can
analyse many properties of the linear operator by finding out the various invariant subspaces of the operator.
The primary purpose of this section is to prove that if T is any linear operator on a finite-dimensional space
V , then there exist vectors v1, . . . , vk in V such that

V = Z(v1;T )⊕ · · · ⊕ Z(vk;T ).

This will show that T is the direct sum of a finite number of linear operators, each of which has a cyclic vector.
The cyclic decomposition theorem is closely related to the following question. Which T -invariant subspaces
W have the property that there exists a T -invariant subspace W ′ such that V = W ⊕ W ′? In fact, there
are many subspaces W ′ for which V = W ⊕ W ′ but we can’t say whether they are invariant or not. This
unit is dedicated to the study of the invariant factors and elementary divisors of a linear operator and certain
canonical forms of it.

Objectives

After reading this unit, you will be able to

• define the invariant subspaces and see certain examples

• learn about the independent subspaces of a vector space

• learn about the direct-sum decomposition of a vector space into independent subspaces of it

• learn about the invariant direct sum decomposition of a vector space

• define the cyclic vectors of a vector space
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• define the smallest invariant subspace containing a vector

• define T -admissible subspaces of a vector space

• learn the cyclic decomposition theorem for a finite-dimensional vector space with respect to a linear
operator T

• learn the generalized Cayley-Hamilton theorem for a linear operator on a finite-dimensional vector
space

• define the invariant factors of a matrix

• learn to find the rational canonical form for a matrix

6.2 Invariant Subspaces

Definition 6.2.1. Let V be a vector space and T , a linear operator on V . If W is a subspace of V , we say that
W is invariant under T if for each w ∈ W , the vector T (w) is also in W .

Example 6.2.2. If T is any linear operator on V , then V is invariant under T as is the zero subspace. The
range of T and the null space of T are also invariant under T .

Example 6.2.3. Let F be a field and D be the differentiation operator on the space F [x] of polynomials over
F . Let n be a positive integer and W be a subspace of polynomials of degree not greater than n. Then W is
invariant under T .

Example 6.2.4. Let T be the linear operator on R2 which is represented in the standard basis by the matrix

A =

[
0 −1
1 0

]
Then the only subspaces of R2 which are invariant under T are R2 and the zero subspace. Any other invariant
subspace would necessarily have dimension 1. But, if W is the subspace spanned by some non-zero vector v,
the fact that W is invariant under T means that v is an eigen vector, but A has no eigen value.

When the subspace W is invariant under the operator T , then T induces a linear operator TW on the space
W . The linear operator TW is defined by TW (v) = T (v), for v ∈ W . Now we turn to an investigation of the
simplest possible nontrivial invariant subspaces : invariant subspaces with dimension 1. How does an operator
behave on an invariant subspace of dimension 1? Subspaces of a vector space V of dimension 1 are easy to
describe. Take any non-zero vector u ∈ V and let U equals the set of all scalar multiples of u, that is

U = {au : a ∈ F}.

where, F is the underlying field. The U is a one-dimensional subspace of V , and every one-dimensional
subspace of V is of this form. If u ∈ V and the subspace defined as above is invariant under T , then T (u)
must be in U , which means that there must exist a scalar c ∈ F such that T (u) = cu ∈ U . Conversely, if
u is a non-zero vector in V such that T (u) = cu for some scalar c, then the subspace U defined above is a
one-dimensional subspace of V invariant under T . The equation T (u) = cu is same as (T − cI)u = 0, so
that c is an eigen value and u is an eigen vector of T . Thus, we can see that the one dimensional invariant
subspace of an operator T is precisely the eigen space of the operator. But the converse is not true always, that
is, any eigen space of T need not be one-dimensional though it is invariant under T (can you think of such an
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example?).

When V is finite-dimensional, the invariance of a subspace W under the linear operator T has a simple
matrix interpretation. Suppose we choose an ordered basis B = {v1, . . . , vn} be an ordered basis of V and
B′ = {v1, . . . , vr} of W (r = dimW ). Let A = [T ]B so that

T (vj) =
n∑

i=1

Aijvi.

Since W is invariant under T , the vector T (vj) belongs to W for j ≤ r. This means that

T (vj) =

r∑
i=1

Aijvi, j ≤ r.

In other words, Aij = 0 if j ≤ r and i > r. Schematically A has the block form

A =

[
B C
0 D

]
where B is an r × r matrix, C is an r × (n− r) matrix, and D is an (n− r)× (n− r) matrix.

Direct-Sum Decompositions

Definition 6.2.5. The subspaces W1,W2, . . . ,Wk of a vector space V are said to be independent if

w1 + w2 + · · ·+ wk = 0, wi ∈ Wi

implies that each wi is zero.

For k = 2, we can say that independence means that W1 ∩ W2 = {0}. If k > 2, it says that each Wj

intersects the sum of the other subspaces only at the zero vector.

The independence can be understood as this: If W = W1 +W2 + · · · +Wk be the subspace spanned by
W1,W2, . . . ,Wk, then each vector w ∈ W can be uniquely expressed as the sum of the vectors in Wj , that is,

w = w1 + w2 + · · ·+ wk, wi ∈ Wi

If w has another representation as

w = u1 + u2 + · · ·+ uk, ui ∈ Wi

then subtracting, we get

0 = (w1 − u1) + · · ·+ (wk − uk), wk − uk = 0

and the definition of independence implies that wj − uj = 0 for 1 ≤ j ≤ k. Thus, when W1,W2, . . . ,Wk are
independent, we can operate with the vectors in W as k-tuples.

Lemma 6.2.6. Let V be a finite-dimensional vector space and let W1,W2, . . . ,Wk be subspaces of V and let
W = W1 +W2 + · · ·+Wk. Then the following are equivalent

1. W1,W2, . . . ,Wk are independent.
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2. For each j, 2 ≤ j ≤ k, we have

Wj ∩ (W1 + · · ·+Wj−1) = {0}.

3. If Bi is an ordered basis for Wi, for each i, then the sequence B = {B1,B2, . . . ,Bk} is an ordered basis
for W .

If the above conditions hold, we say that the sum W = W1 + W2 + · · · + Wk is direct or that W is the
direct sum of W1,W2, . . . ,Wk and we write it as

W = W1 ⊕W2 ⊕ · · · ⊕Wk.

Example 6.2.7. Let V be a finite-dimensional vector space over the field F and let {v1, v2, . . . , ln} be a basis
for V . If Wi be the one-dimensional subspace spanned by vi, then

V = W1 ⊕W2 ⊕ · · · ⊕Wn.

Example 6.2.8. Let T be any linear operator on a finite-dimensional space V . Let c1, c2, . . . , ck be the
distinct eigen values of T , and let Wi be the space of eigen vectors associated with the eigen value ci. Then
W1,W2, . . . ,Wk. And if T is diagonalizable, then V = W1 ⊕W2 ⊕ · · · ⊕Wn.

Definition 6.2.9. If V is a vector space, a projection of V is a linear operator E on V such that E2 = E.

Suppose E is a projection. Let R be the range of E and let N be the null space of E. We establish that
V = R ⊕ N . Because w ∈ R if and only if w = E(w), since w = E(v) implies E(w) = E(E(v)) =
E2(v) = E(v) = w. Conversely, if w = E(w), the obviously w ∈ R. The unique representation of v as the
sum of vectors in R and N is v = E(v) + (v − E(v)).

If R and N are subspaces of V such that V = R ⊕ N , there is a unique projection operator E which has
range R and null space N . The operator is called the projection on R along N .

Projections are clearly diagonalizable since for any projection E, we always have E2 = E and since the
minimal polynomial divides any annihilating polynomial of an operator, so the minimal polynomial can be
either x = 0, or x− 1 = 0 or x(x− 1) = 0 which is the product of distinct linear factors in all the cases.

Projections can be used to describe direct-sum decompositions of the space V .

Theorem 6.2.10. Let V = W1 ⊕ W2 ⊕ · · · ⊕ Wk, then there exist k linear operators E1, E2, . . . , Ek on V
such that

1. each Ei is a projection,

2. EiEj = 0, if i ̸= j,

3. I = E1 + E2 + · · ·+ Ek,

4. the range of Ei is Wi

Conversely, if E1, E2, . . . , Ek are k linear operators on V satisfying conditions 1-3, and if Wi is the range of
Ei, then V = W1 ⊕W2 ⊕ · · · ⊕Wk
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Proof. Suppose V = W1 ⊕W2 ⊕ · · · ⊕Wk. Then for each j, we define an operator Ej on V . Let v ∈ V and
let v = v1 + v2 + · · · + ck with vi ∈ Wi. Then we define Ej as Ej(v) = vj . Then Ej is well-defined and it
is easy to check that it is linear and that, the range of Ej is Wj and that E2

j = Ej . The null space of Ej is the
subspace

W1 +W2 + · · ·+Wj−1 +Wj+1 + · · ·+Wk

for, the statement that Ej(v) = 0 simply means vj = 0, that is, v is actually a sum of vectors from the spaces
Wi, with i ̸= j. In terms of the projections Ej , we have

v = E1(v) + · · ·+ Ek(v)

for each v ∈ V . So, the identity operator on V can be written as

I = E1 + E2 + · · ·+ Ek.

Also, if i ̸= j, then we see that EiEj = 0 since the range of Ej is the subspace Wj which lies in the null
space of Ej .

Conversely, suppose E1, E2, . . . , Ek are k linear operators on V satisfying conditions 1-4. Then certainly
we must have

V = W1 +W2 + · · ·+Wk.

since by condition 3, we have
v = E1(v) + · · ·+ Ek(v)

for every v ∈ V , and Ei(v) ∈ Wi. This expression for v is unique, because if

v = v1 + · · · vk, vi ∈ Wi,

say vi = Ei(wi), then using 1 and 2, we have

Ej(v) =
k∑

i=1

Ejvi =
k∑

i=1

EjEiwi = E2
j (wj) = Ej(wj) = vj .

This shows that V is the direct sum of the Wi.

Invariant Direct Sums

We are primarily interested in direct-sum decompositions of V where each subspace if invariant under some
linear operator T . Given such a decomposition of V , T induces a linear operator Ti on each Wi by restriction.
Thus, if v ∈ V , then we have the unique representation

v = v1 + · · ·+ vk, vi ∈ Wi

where, each Wi is an invariant subspace of V into which V decomposes. Then

T (v) = T1(v1) + · · ·+ Tk(vk)

We can say that T is the direct-sum of the operators T1, · · · , Tk. The fact that V = W1⊕· · ·⊕Wk, enables us
to associate a unique k-tuple for each v ∈ V (which is (v1, . . . , vk)), in such a way that we can carry out the
linear operations in V by working in the individual subspaces Wi. The fact, that each Wi is invariant under T
enables us to view T as independent action of Ti on the subspaces Wi.
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The above situation can be interpreted in terms of matrices. Suppose we select an ordered basis Bi of Wi

and let B be the ordered basis for V consisting of the union of the Bi, arranged in the order B1,B2, . . . ,Bk.
Let A = [T ]B and let Ai = [T ]B⟩ , then A has the block form

A =


A1 0 · · · 0
0 A2 · · · 0
...

... · · ·
...

0 0 · · · Ak


Each Ai is a di × di matrix, where di = dimWi, and 0’s are symbols for rectangular blocks of scalars 0’s of
various sizes.

Theorem 6.2.11. Let T be a linear operator on the space V , and let W1, . . . ,Wk and E1, . . . , Ek be the
projections as in the previous theorem. Then a necessary and sufficient condition that each subspace Wi be
invariant under T is that T commute with each of the projections Ei, that is

TEi = EiT, i = 1(1)k.

We shall now describe a diagonalizable operator T in the language of invariant direct sum decomposi-
tions (projections which commute with T ). This will be a great help to us in understanding some deeper
decomposition theorems later.

Theorem 6.2.12. Let T be a linear operator on a finite-dimensional space V . If T is diagonalizable and
c1, . . . , ck are the distinct eigen values of T , then there exist linear operators E1, . . . , Ek on V such that

1. T = c1E1 + · · ·+ ckEk;

2. I = E1 + · · ·+ Ek;

3. EiEj = 0, i ̸= j;

4. E2
i = Ei;

5. the range of Ei is the eigen space for T associated with ci.

Conversely, if there exist k distinct scalars c1, . . . , ck and k non-zero linear operators E1, . . . , Ek satisfying
conditions 1-3, then T is diagonalizable and conditions 4 and 5 are also satisfied.

Proof. Suppose that T is diagonalizable, with distinct eigen values c1, . . . , ck. Let Wi be the eigen spaces of
V . We know that,

V = W1 ⊕ · · · ⊕Wk

Let E1, . . . , Ek be the projections associated with this decomposition, as we have done before. Then 2-5 are
satisfied. To verify 1, let v ∈ V and we have

v = E1(v) + · · ·+ Ek(v)

So,
T (v) = TE1(v) + · · ·+ TEk(v) = c1E1(v) + · · ·+ ckEk(v).

Thus,
T = c1E1 + · · ·+ ckEk.

Now suppose that we are given a linear operator T along with distinct scalars ci and non-zero operators Ei

which satisfy 1-3. Since EiEj = 0, for i ̸= j, we multiply both sides of I = E1 + · · ·+Ek by Ei, and obtain
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immediately E2
i = Ei. Multiplying T = c1E1 + · · · + ckEk by Ei, we get TEi = ciEi, which shows that

any vector in the range of Ei, is in the null space of T − ciI . Since we have assumed that Ei ≠ 0, this proves
that there is a non-zero vector in the null space of T − ciI , that is, ci is an eigen value of T . Furthermore, ci
are all of the eigen values of T ; for if c is any scalar, then

T − cI = (c1 − c)Ei + · · ·+ (ck − c)Ek

so that, if (T − cI)(v) = 0, we must have (ci − c)Ei(v) = 0. If v is not the zero vector, then Ei(v) ≠ 0 for
some i, so that for this i, we have ci − c = 0.

Certainly T is diagonalizable, since we have shown that every non-zero vector in the range of Ei is an eigen
vector of T , and the fact that I = E1 + · · · + Ek shows that these characteristic vectors span V . All that
remains to be demonstrated is that the null space of T − ciI is exactly the range of Ei. But this is clear since
if T (v) = civ, then

k∑
j=1

(cj − ci)Ej(v) = 0, for each j

and then
Ej(v) = 0, i ≠ i.

Since v = E1(v) + · · ·+ Ek(v), and Ej(v) = 0 for j ̸= i, we have v = Ej(v), which proves that v is in the
range of Ei.

Primary Decomposition Theorem

We studying a linear operator T on the finite-dimensional space V , by decomposing it into a direct sum of
operators which are in some sense elementary. We can do this through the eigen values and vectors of T in
certain special cases, i.e.,when T is diagonalizable, or, when the minimal polynomial for T factors over the
scalar field F into a product of distinct monic polynomials of degree 1 . What can we do with the general T ?
While studying T using eigen values, we are confronted with two problems. First, T may not have a single
eigen value ; this is really a deficiency in the scalar field, namely, that it is not algebraically closed, and we
have nothing to do in that case. Second, even if the characteristic polynomial factors completely over F into
a product of polynomials of degree 1, there may not be enough eigen vectors for T to span the space V ; this
is clearly a deficiency in T . The second situation is illustrated by the operator T on F 3, where F is any field
represented in the standard basis by

A =

2 0 0
1 2 0
0 0 1

 .

The characteristic polynomial for A is (x − 2)2(x + 1) and this is also the minimal polynomial for A, and
thus, for T . Hence, T is not diagonalizable and this happens since the nullity of T − 2I is 1. On the other
hand, the null space of T + I and (T − 2I)2 span V . From here, we get the motivation for our further work.
Suppose we are given that

m = (x− c1)
r1 . . . (x− ck)

rk

where c1, . . . , ck ∈ F , then we will show that V is the direct sum of the null spaces of (T − ciI)
ri , i = 1(1)k.

Theorem 6.2.13. Let T be a linear operator on the finite-dimensional vector space V over the field F . Let m
be the minimal polynomial for T as

m = mr1
1 . . .mrk

k

where the mi are distinct irreducible monic polynomials over F and ri are positive integers. Let Wi be the
null space of mi(T )

ri , i = 1(1)k. Then
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1. V = W1 ⊕ · · · ⊕Wk;

2. each Wi in invariant under T ;

3. if Ti is the operator induced on Wi by T , then the minimal polynomial for Ti is mri
i .

Proof. Let
fi =

m

mri
i

= Πj ̸=im
rj
j .

Since mi are distinct polynomials, the polynomials fi are relatively prime which implies that there are poly-
nomials g1, . . . , gk such that

n∑
i=1

figi = 1.

Also, if i ̸= j, then fifj is divisible by the polynomial m, since fifj contains each mrl
l as factor. We shall

show that the polynomials hi = figi such that hi(T ) is the identity on Wi and is zero on the other Wj such
that h1(T ) + · · ·+ hk(T ) = I .

Let Ei = hi(T ) = fi(T )gi(T ). Since h1 + · · ·+ hk = 1 and p divides fifj for i ̸= j, we have

E1 + · · ·+ Ek = I, EiEj = 0, if i ̸= j.

Thus, Ei are the projections which correspond to some direct-sum decomposition V . We will show that the
range of Ei is exactly Wi. It is clear that each vector in the range of Ei is in Wi, since if v ∈ Ei, then
v = Ei(v), and so

mi(T )(v) = mi(T )
riEi(v) = mi(T )

rifi(T )gi(T )(v) = 0

since m divides mri
i figi. Conversely, suppose that v is in the null space of mi(T )

ri . If j ̸= i, then fjgj is di-
visible by mri

i and so fj(T )gj(T )(v) = 0, that us Ej(v) = 0 for j ̸= i. But this is immediate that Ei(v) = v,
that is v is in the range of Ei. This completes the proof of 1.

Also, it is evident that Wi are invariant under T . If Ti is the operator induced on Wi by T , then obviously
mi(T )

ri = 0, because by definition, mi(T )
ri is zero on Wi. This shows that the minimal polynomial for Ti

divides mri
i . Conversely, let g be any polynomial such that g(Ti) = 0. Then g(T )fi(T ) = 0. Thus gfi is

divisible by the minimal polynomial of T , that is, mri
i divides gfi. It is easily seen that mri

i divides g. Hence
the minimal polynomial for Ti is mri

i .

Exercise 6.2.14. 1. Let T be a linear operator on a finite-dimensional vector space V . Let R be the range
of T and let N be the null space of T . Prove that R and N are independent if and only if V = R⊕N .

2. Let T be a linear operator on V . Suppose V = W1⊕· · ·⊕Wk, where each Wi is invariant under T . Let
Ti be the induced operator on Wi. Then show that the characteristic polynomial f of T is the product
of those of Ti.

3. Let T be a linear operator on V which commutes with every projection operator on V . What can you
say about T ?

4. Let T be a linear operator on the finite-dimensional space V with characteristic polynomial

f = (x− c1)
d1 . . . (x− ck)

dk
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and minimal polynomial
m = (x− c1)

r1 . . . (x− ck)
rk .

Let Wi be the null space of (T − ciI)
ri . Then show that Wi is the set of all vectors v ∈ V such that

(T − ciI)
m(v) = 0 for some positive integer m (which may depend on v).

Cyclic Subspaces and Annihilators

If V is a finite-dimensional vector space over a field F and T is a fixed linear operator on V . If v is any
vector in V , there is a smallest subspace of V which is invariant under T and contains v. This subspace can be
defined as the intersection of all T -invariant subspaces which contain v. If W is any subspace of V which is
invariant under T and contains v, then W must also contain T (v) and hence must contain T 2(v), T 3(v), and
so on. In other words, W must contain g(T )(v) for every polynomial g over F . This is clearly the smallest
subspace which contains the vector v and invariant under T .

Definition 6.2.15. If v is any vector in V , the T -cyclic subspace generated by v is the subspace Z(v;T ) of all
vectors of the form g(T )(v), g in F [x]. If Z(v;T ) = V , then v is called a cyclic vector for T .

In other words, Z(v;T ) is the subspace {v, T (v), T 2(v), . . .} and v is a cyclic vector if and only if these
vectors span V . Every arbitrary operator need not have cyclic vectors.

Example 6.2.16. For any operator T , the T -cyclic subspace generated by the zero vector is the zero subspace.
The space Z(v;T ) is one-dimensional if and only if v is an eigen vector for T . For the identity operator, every
non-zero vector generates a one-dimensional cyclic subspace; thus, if dimV > 1, the identity operator has no
cyclic vector.

For any operator T and vector v, we are interested in the linear relations

c0 + c1T (v) + · · ·+ ckT
k(v) = 0

between the vectors T i(v), or, we shall be interested in the polynomials g = c0 + c1x+ · · ·+ ckx
k such that

g(T )(v) = 0. The set of all g satisfying the property in F [x] is clearly a non-zero ideal since it contains the
minimal polynomial m of the operator T .

Definition 6.2.17. If v is any vector in V , the T -annihilator of v is the ideal M(v;T ) in F [x] consisting of
all polynomials g over F such that g(T )(v) = 0. Then the unique monic polynomial mv which generates this
ideal will also be called the T -annihilator of v.

We note that the degree of mv should be greater than zero unless v is the zero vector.

Theorem 6.2.18. Let v be any non-zero vector in V and mv be the T -annihilator of v. Then

1. the degree of mv is equal to the dimension of the cyclic subspace Z(v;T );

2. if the degree of mv is k, then the vectors v, T (v), T 2(v), . . . , T k−1(v) form a basis for Z(v;T )

3. if U is the linear operator on Z(v;T ) induced by T , then the minimal polynomial for U is mv.

If v is a cyclic vector for T , then the minimal polynomial for T must have degree equal to the dimension
of the space V ; hence, the Cayley-Hamilton theorem tells us that the minimal polynomial for T is the char-
acteristic polynomial for T .
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Our plan is to study the general T by using operators which have a cyclic vector. So, let us take a look at a
linear operator U on a space W of dimension k which has a cyclic vector v. By the above theorem, the vectors
v, . . . , Uk−1(v) forms a basis for the space W , and the annihilator mv of v is the minimal polynomial for U
(and hence also the characteristic polynomial for U ). If we let vi = U i−1(v), i = 1(1)k, then the action of U
on the ordered basis B = {v1, . . . , vk} is

U(vi) = vi+1, i = 1(1)k − 1

U(vk) = −c0v1 − c1v2 − · · · − ck−1vk

where, mv = c0 + c1x+ · · · + xk. The expression for U(vk) follows from the fact that mv(U)(v) = 0, that
is

Uk(v) + ck+1U
k−1(v) + · · ·+ c1U(v) + c0v = 0.

This says that the matrix of U in the ordered basis B is
0 0 0 · · · 0 −c0
1 0 0 · · · 0 −c1
0 1 0 · · · 0 −c2
...

...
...

. . .
...

...
0 0 0 · · · 1 −ck−1

 .

The matrix is called the companion matrix of the monic polynomial mv.

Theorem 6.2.19. If U is a linear operator on the finite-dimensional space W , then U has a cyclic vector if and
only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal
polynomial for U .

Proof. If U has a cyclic vector, then there is such an ordered basis for W . Conversely, if we have some
ordered basis {v1, . . . , vk} for W in which U is represented by the companion matrix of its polynomial, it is
obvious that v1 is a cyclic vector for U .

Corollary 6.2.20. If A is the companion matrix of a monic polynomial m, then m is both the minimal and
the characteristic polynomial of A.

If T is any linear operator on the space V and v is any vector in V , then the operator U which T induces
on the cyclic subspace Z(v;T ) has a cyclic vector, namely v. Thus, Z(v;T ) has an ordered basis in which U
is represented by the companion matrix of mv, the T -annihilator of v.

Exercise 6.2.21. 1. Show that Z(v;T ) is one dimensional if and only if v is an eigen vector of T .

2. Let T be the linear operator on R3 which is represented in the standard ordered basis by the matrix2 0 0
0 2 0
0 0 −1

 .

Prove that T has no cyclic vector. What is the T -cyclic subspace generated by the vector (1,−1, 3)?

3. Let V be an n-dimensional vector space, and let T be a linear operator on V . Suppose that T is
diagonalizable. If T has a cyclic vector, show that T has n distinct eigen values.
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6.3 Invariant Factors

Definition 6.3.1. Let T be a linear operator on a vector space V . A subspace W of V is said to be T
-admissible if

1. W is T -invariant;

2. if f(T )(v) is in W , there exists a vector w in W such that f(T )(v) = f(T )(w).

Note that, from the discussion we had done in the introduction of this unit, if V is decomposed as V = W⊕
W ′, where both W and W ′ are invariant, then any vector v ∈ V has a unique representation v = w+w′, where
w ∈ W and w′ ∈ W ′. If f is any polynomial over the scalar field, then f(T )(v) = f(T )(w) + f(T )(w′).
Since W and W ′ are T -invariant, the vectors f(T )(w) and f(T )(w′) lies in W and W ′ respectively. Thus,
f(T )(v) is in W if and only if f(T )(w′) = 0. Hence, we can say that for such a case, W is admissible.

Let W be a proper T -invariant subspace. Let us try to find a non-zero vector v such that

W ∩ Z(v;T ) = {0}.

We can choose a vector w′ which is not in W . Consider the T -conductor S(w′;W ), which consists of
all polynomials g such that g(T )(w′) is in W . Recall that the monic polynomial f which generates the
ideal S(w′;W ) is also called the T -conductor of w′ into W . The vector f(T )(w′) is in W . Now, if W
is T -admissible, there is a w′′ in W with f(T )(w′) = f(T )(w′′). Let w = w′ − w′′ and let g be any
polynomial. Since w′ − w is in W , g(T )(w′) will be in W if and only if g(T )(w) is in W ; in other words,
S(w;W ) = S(w′;W ). Thus, the polynomial f is also the T -conductor of w into W . But f(T )(w) = 0
which tells us that g(T )(w) is in W if and only if g(T )(w) = 0, that is, the subspaces Z(v;T ) and W are
independent and f is the T -annihilator of v.

Theorem 6.3.2. (Cyclic Decomposition Theorem) Let T be a linear operator on a finite-dimensional vector
space V and let W0 be a proper T -admissible subspace of V . There exist non-zero vectors v1, . . . , vk in V
with respective T -annihilators m1, . . . ,mk such that

1. V = W0 ⊕ Z(v1;T )⊕ · · · ⊕ Z(vk;T );

2. mr divides mr−1, r = 2, . . . , k.

Furthermore, the integer k and the annihilators m1, . . . ,mk are uniquely determined by 1 and 2 and the fact
that no vr is 0.

The proof is rather lengthy and has been omitted for general good.

Our next corollary gives us the answer to our primary question which we asked at the beginning of this
unit regarding the existence of a T -invariant subspace W ′ which forms a complementary for a T -invariant
subspace W of V .

Corollary 6.3.3. If T is a linear operator on a finite-dimensional vector space, every T -admissible subspace
has a complementary subspace which is also invariant under T .

Proof. Let W be an admissible subspace of V . If W = V , the required complement is {0}. If W is proper,
then we apply the Cyclic decomposition theorem and let

W ′ = Z(v1;T )⊕ · · · ⊕ Z(vk;T ).

Then W ′ is invariant under T and V = W ⊕W ′.
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Corollary 6.3.4. Let T be a linear operator on a finite-dimensional vector space V .

1. There exists a vector v in V such that the T -annihilator of v is the minimal polynomial for T .

2. T has a cyclic vector if and only if the characteristic and minimal polynomials for T are identical.

Proof. If V = {0}, the results are trivially true. If V ̸= {0}, let

V = Z(v1;T )⊕ · · · ⊕ Z(vk;T )

where the T -annihilators m1, . . . ,mk are such that mr+1 divides mr, 1 ≤ r ≤ k − 1. As we noted in the
previous theorem, it follows easily that m1 is the minimal polynomial for T , that is, the T -conductor of V
into {0}.

We saw in the previous unit that if T has a cyclic vector, the minimal polynomial for T coincides with the
characteristic polynomial. Choose any vector v as in 1. If the degree of the minimal polynomial is dimV ,
then V = Z(v;T ).

Theorem 6.3.5. (Generalized Cayley-Hamilton Theorem) Let T be a linear operator on a finite-dimensional
vector space V . Let m and f be the minimal and characteristic polynomials for T , respectively. Then

1. m divides f ;

2. m and f have the same prime factors, except for multiplicities;

3. If m = f r1
1 . . . f rk

k is a prime factorization of m, then f = fd1
1 . . . fdk

k , where di is the nullity of fi(T )ri
divided by the degree of fi.

Proof. If V = {0}, then the case is trivial. To prove 1 and 2, consider a cyclic decomposition of V . As in
the proof of the above corollary, m1 = m. Let Ui be the restriction of T to Z(vi;T ). Then Ui has a cyclic
vector and so mi is both the minimal as well as characteristic polynomial for Ui. Hence, the characteristic
polynomial f is the product f = m1 . . .mr. Clearly, m1 = m divides f and this proves 1. Obviously any
prime divisor of m is a prime divisor of f . Conversely, a prime divisor of f = m1 . . .mr must divide one of
the factors mi, which is turn divides m1.

Let the given factorization in the statement of the theorem be the prime factorization of m. We use the
primary decomposition theorem which tells us that, if V is the null space of fi(T )ri , then

V = V1 ⊕ · · · ⊕ Vk

and f ri
i is the minimal polynomial of the operator Ti, obtained by restricting T to the subspace Vi. Apply

part 2 of the present theorem to the operator Ti. Since its minimal polynomial is a power of the prime fi, the
characteristic polynomial for Ti has the form fdi

i , where di ≥ ri. Obviously

di =
dimV

deg fi

and (almost by definition) dimVi = nullityfi(T )ri . Since T is the direct sum of the operators T1, . . . , Tk, the
characteristic polynomial f is the product

f = fd1
1 . . . fdk

k .

The polynomials m1, . . . ,mr are called the invariant factors for a matrix B.
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6.4 Rational Forms

Let us try to understand the cyclic-decomposition theorem for matrices. If we have the operator T and the
direct-sum decomposition and Bi be the cyclic ordered basis {vi, T (vi), . . . , T ki−1(vi)} for Z(vi;T ). Here,
ki denotes the dimension of Z(vi;T ), that is, the degree of the annihilator mi. The matrix of the induced
operator Ti in the ordered basis Bi is the companion matrix of the polynomial mi. Thus, if we let B be the
ordered basis for V which is the union of the Bi arranged in the order B1, . . . ,Br, then the matrix of T in the
ordered basis B will be

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ar


where Ai is the ki × ki companion matrix of mi. An n × n matrix A, which is the direct-sum of companion
matrices of non-scalar monic polynomials m1, . . . ,mr such that mi+1 divides mi for i = 1, . . . , r − 1, will
be said to be in rational form.

Theorem 6.4.1. Let F be a field and let B be an n × n matrix over F . Then B is similar over the field F to
unique matrix which is in rational form.

We have seen a simpler form for non-diagonalizable matrices, that is the Jordan form. We have a theorem
for triangular matrices which states that

Theorem 6.4.2. An n × n is triangulable, that is, similar to a triangular matrix if and only if its minimal
polynomial is the product of linear factors (not necessarily distinct).

Now, the Jordan form is a triangular matrix and we know that the triangular matrices are the next "simplest"
matrices to deal with, right after diagonal ones and we have also seen with certain examples that the Jordan
form was deducible for a matrix when its minimal polynomial, or we can also say that its characteristic
polynomial was the product of linear factors. But this is not always the case. For example, consider the matrix
over the real field

A =

[
0 −1
1 0

]
.

The characteristic polynomial of the above matrix is f(x) = x2 + 1. Since the minimal polynomial of
a matrix divides its characteristic polynomial, and since the characteristic polynomial is irreducible, so the
minimal polynomial of the matrix is also m(x) = x2 + 1. These are the cases when the rational forms come
into play. We will illustrate how we find the rational form for a matrix.

Illustration 6.4.1. 1. Consider the real matrix

A =

−2 0 0
−1 −4 −1
2 4 0

 .

Then the characteristic polynomial of the matrix can be calculated and is equal to f(x) = x3 + 6x2 +
12x + 8 = (x + 2)3. We have, A + 2I ≠ 0, but (A + 2I)2 = 0. Thus, the minimal polynomial of
the matrix is (x + 2)2. We know that the largest invariant factor is simply the minimal polynomial.
Furthermore, we know that the size of our canonical form matrix must be 3 × 3, and that our invariant
factors must divide the minimal polynomial. Thus, there are two invariant factors (x+2)2 = x2+4x+4
and x+ 2. Therefore, the rational canonical form of the matrix is−2 0 0

0 0 −4
0 1 −4

 .
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Note that the minimal polynomial of A is the product of linear factors and hence we can find the Jordan
form for A. (Find it)

Exercise 6.4.3. 1. Find the minimal polynomials and the rational form for the following matrices 0 −1 −1
1 0 0
−1 0 0

 ,

 c 0 −1
0 c 1
−1 1 c

 .

2. Find the rational form of the matrix  1 3 3
3 1 3
−3 −3 −5

 .

Few Probable Questions

1. Show that for a direct-sum decomposition of a finite-dimensional vector space V , V = W1⊕W2⊕· · ·⊕
Wk, there exists k projection operators Ei such that the range of each Ei is Wi and I = E1 + · · ·+Ek.

2. State and prove the primary decomposition theorem.

3. State and prove the Generalized Cayley-Hamilton theorem.

4. Find the minimal polynomial, invariant factors and the rational form of the following matrix2 −2 14
0 3 −7
0 0 2

 .
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Unit 7

Course Structure

• Inner Product Spaces: Inner product and Norms. Adjoint of a linear operator, Normal, self adjoint,
unitary, orthogonal operators and their matrices,

7.1 Introduction

The inner product or the dot product on Rn is defined by

(u, v) = u1v1 + u2v2 + . . .+ unvn,

where u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn. It satisfies the following properties

1. Linearity : (au+ bv, w) = a(u,w) + b(v, w), for real constants a, b;

2. Symmetry : (u, v) = (v, u);

3. Positive definite : (u, u) ≥ 0 and (u, u) = 0 if and only if u = 0,

for all u, v, w ∈ Rn. With the dot product we have geometric concepts such as the length of a vector, the angle
between two vectors, orthogonality, etc. We shall try to push these concepts to abstract vector spaces so that
geometric concepts can be applied to describe abstract vectors.

Objectives

After reading this unit, you will be able to

• define inner product and norm on a vector space

• define and discuss the basic properties of inner product space

• recall the idea of orthogonal and orthonormal set and their basic properties

• define adjoint of a linear operator and discuss its properties

• define unitary operator and discuss its properties

• define normal operators and discuss some of its properties
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7.2 Inner Product Space

Let us begin with the definition of inner product on a vector space V .

Definition 7.2.1. Let F be the field of real numbers or the field of complex numbers, and V a vector space
over F . An inner product on V is a function ⟨, ⟩ : V × V → F such that it satisfies the following axioms.

1. Linearity : ⟨au+ bv, w⟩ = a⟨u,w⟩+ b⟨v, w⟩, for real constants a, b;

2. Symmetry : ⟨u, v⟩ = ⟨v, u⟩, the bar denoting complex conjugation;

3. Positive definite : ⟨u, u⟩ ≥ 0 and ⟨u, u⟩ = 0 if and only if u = 0

for every vector u, v, w ∈ V and scalar a, b ∈ F .

Let us look into a few common examples.

Example 7.2.2. The standard dot product on Rn defined in the introduction is one of the most common
examples of the inner product.

Example 7.2.3. Let x = (x1, x2) and y = (y1, y2) in R2. Define

⟨x, y⟩ = 2x1y1 − x1y2 − x2y1 + 5x2y2.

Then ⟨, ⟩ is an inner product on R2. t is easy to see the linearity and the symmetric property. As for the positive
definite property, note that

⟨x, x⟩ = 2x21 − 2x1x2 + 5x22

= (x1 + x2)
2 + (x1 − 2x2)

2 ≥ 0.

Moreover, ⟨x, x⟩ = 0 if and only if

x1 + x2 = 0, x1 − 2x2 = 0,

which implies x1 = x2 = 0.

Example 7.2.4. Let V be the vector space of all continuous complex-valued functions on the unit interval,
0 ≤ t ≤ 1. Let

⟨f, g⟩ =
∫ 1

0
f(t)g(t)dt.

Example 7.2.5. The vector space Mm,n of all m × n real matrices can be made into an inner product space
under the inner product

⟨A,B⟩ = tr
(
BTA

)
,

where A, B ∈ Mm,n.

For instance, when m = 3, n = 2, and for

A =

a11 a12
a21 a22
a31 a32

 , B =

b11 b12
b21 b22
b31 b32

 ,

we have

BTA =

[
b11a11 + b21a21 + b31a31 b11a12 + b21a22 + b31a32
b12a11 + b22a21 + b32a31 b12a12 + b22a22 + b32a32

]
.
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Thus,

⟨A,B⟩ = b11a11 + b21a21 + b31a31 + b12a12 + b22a22 + b32a32

=

3∑
i=1

3∑
j=1

aijbij .

Definition 7.2.6. Let V be a vector space with an inner product ⟨, ⟩. Let v ∈ V . The norm (also called the
length) of v is defined as the number

∥v∥ =
√
⟨v, v⟩.

If ∥v∥ = 1, then v is called a unit vector and v is said to be normalized. For any nonzero vector u ̸= 0, we
have the unit vector

û =
1

∥u∥
u.

This process is called normalizing u.
Also, we can think of a matrix for an inner product ⟨, ⟩ with respect to some basis of the underlying vector.

This means the matrix of an inner product varies with the underlying basis. Let B = {v1, v2, . . . , vn} be a
basis of an n-dimensional inner product space V . For vectors u, v ∈ V , we have

u = x1v1 + x2v2 + . . .+ xnvn

v = y1v1 + y2v2 + . . .+ ynvn.

The linearity implies

⟨u, v⟩ =

〈
n∑

i=1

xivi

n∑
j=1

yjvj

〉

=

n∑
i=1

n∑
j=1

xiyj⟨vi, vj⟩.

We call the n× n matrix

A =


⟨v1, v1⟩ ⟨v1, v2⟩ · · · ⟨v1, vn⟩
⟨v2, v1⟩ ⟨v2, v2⟩ · · · ⟨v2, vn⟩

...
...

...
⟨vn, v1⟩ ⟨vn, v2⟩ · · · ⟨vn, vn⟩


is the matrix of the inner product ⟨, ⟩ relative to the basis B. The inner product can be written as

⟨u, v⟩ = [u]BTA[v]B.

Thus, we have arrived at the following theorem.

Theorem 7.2.7. Let V be an n-dimensional vector space with an inner product ⟨, ⟩ and let A be the matrix of
⟨, ⟩ relative to a basis B. Then for any vectors u, v ∈ V ,

⟨u, v⟩ = xTAy

where, x and y are the coordinate vectors of u and v respectively with respect to the basis B.
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Example 7.2.8. For the inner product

⟨x, y⟩ = 2x1y1 − x1y2 − x2y1 + 5x2y2.

on R2, the matrix with respect to the standard basis is given by

A =

[
⟨e1, e1⟩ ⟨e1, e2⟩
⟨e2, e1⟩ ⟨e2, e2⟩

]
=

[
2 −1
−1 5

]
.

Having discussed about the inner product and norm, we are in a position to define the inner product space.

Definition 7.2.9. An inner product space is a real or complex vector space, together with a specified inner
product on that space.

A finite-dimensional real inner product space is often called a Euclidean space. A complex inner product
space is often referred to as a unitary space. Certain basic properties of inner product spaces are listed in the
theorem below.

Theorem 7.2.10. If V is an inner product space, then for any vectors u, v ∈ V and any scalar c

1. ∥cu∥ = |c|∥u∥;

2. ∥u∥ > 0 for u ̸= 0;

3. |⟨u, v⟩| ≤ ∥u∥ · ∥v∥ (Cauchy-Schwarz inequality);

4. ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Definition 7.2.11. Let u, v be vectors in an inner product space V . Then u is orthogonal to v if ⟨u, v⟩ = 0.
We can also say that u and v are orthogonal. If S is a set of vectors in V , S is called an orthogonal set provided
all pairs of distinct vectors in S are orthogonal. An orthonormal set is an orthogonal set S with the additional
property that ∥u∥ = 1 for every u in S.

The zero vector is orthogonal to every vector in V and is the only vector with this property. It is appropriate
to think of an orthonormal set as a set of mutually perpendicular vectors, each having length 1.

Example 7.2.12. The standard basis of either Rn or Cn is an orthonormal set with respect to the standard
inner product.

Orthogonal sets have certain basic properties.

Theorem 7.2.13. An orthogonal set of non-zero vectors is linearly independent.

Proof. Let S be a finite or infinite orthogonal set of non-zero vectors in a given inner product space. Suppose
v1, v2, . . . , vn are distinct vectors in S and that

v = c1v1 + c2v2 + . . .+ cnvn.

Then

⟨v, vi⟩ =

〈
n∑

j=1

cjvj , vi

〉

=
n∑

j=1

cj⟨vi, vj⟩

= ci⟨vi, vi⟩.

Since ⟨vi, vi⟩ ̸= 0, it follows that

ci =
⟨v, vi⟩
∥vi∥2

, 1 ≤ i ≤ n.

Thus, when v = 0, each ci is zero. Hence, S is linearly independent.
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7.3 Adjoint of a Linear Operator

the adjoint of an operator is a generalization of the notion of the Hermitian conjugate of a complex matrix to
linear operators on complex Hilbert spaces.

Definition 7.3.1. Let T : V → V be a linear transformation on an inner product space V . The adjoint of T is
a transformation T ∗ : V → V satisfying

⟨T (x), y⟩ = ⟨x, T ∗(y)⟩

for all x, y ∈ V .

It must come to mind that the matrix representation of T ∗ with respect to any orthonormal basis B is the
complex conjugate of [T ]B. Also, it will be observed that the adjoint of T depends not only on T but on the
inner product as well. To see the existence of the “adjoint” of a linear operator T on V , we begin with linear
functionals on an inner product space and their relation to the inner product.

The basic result is that any linear functional f on a finite-dimensional inner product space is “inner product
with a fixed vector in the space,” i.e., that such an f has the form

f(u) = ⟨u, v⟩,

for some fixed v ∈ V .

Theorem 7.3.2. Let V be a finite-dimensional inner product space, and f a linear functional on V . Then there
exists a unique vector v ∈ V such that

f(u) = ⟨u, v⟩, ∀u ∈ V.

Proof. Let {v1, v2, . . . , vn} be an orthonormal basis for V . Put

v =
n∑

j=1

f(vj)vj

and let fv be a linear functional defined by

fv(u) = ⟨u, v⟩.

Then

fv(vi) =

〈
vi,

n∑
j=1

f(vj)vj

〉
= f(vi).

Since this is true for each vi, it follows that f = fv. Now, for the uniqueness suppose that w ∈ V such that
⟨u, v⟩ = ⟨u,w⟩ for all u ∈ V . Then ⟨v − w, v − w⟩ = 0 which implies v = w. Thus there is exactly one
vector v determining the linear functional f in the stated manner.

We use this result to prove the existence of the “adjoint” of a linear operator T on V .

Theorem 7.3.3. For any linear operator T on a finite-dimensional inner product space V , there exists a unique
linear operator T ∗ on V such that

⟨T (u), v⟩ = ⟨u, T ∗(v)⟩

for all u, v ∈ V .
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Proof. Let v ∈ V . Then 7→ ⟨T (u), v⟩ is a linear functional on V . By the previous theorem, there is a unique
v′ ∈ V such that ⟨T (u), v⟩ = ⟨u, v′⟩ for every u ∈ V . Let T ∗ denote the mapping v 7→ v′

v′ = T ∗(v),

which implies that ⟨T (u), v⟩ = ⟨u, T ∗(v)⟩. We will verify the linearity of T ∗. Let v, w ∈ V and c be a scalar.
Then for any u,

⟨u, T ∗(cv + w)⟩ = ⟨T (u), cv + w⟩
= ⟨T (u), cv⟩+ ⟨T (u), w⟩
= c⟨T (u), v⟩+ ⟨T (u), w⟩
= c⟨u, T ∗(v)⟩+ ⟨u, T ∗(w)⟩
= ⟨u, cT ∗(v)⟩+ ⟨u, T ∗(w)⟩
= ⟨u, cT ∗(v) + T ∗(w)⟩.

Thus, T ∗(cv + w) = cT ∗(v) + T ∗(w) and T ∗ is linear.
The uniqueness of T ∗ is clear. For any v ∈ V , the vector T ∗(v) is uniquely determined as the vector v′

such that ⟨T (u), v⟩ = ⟨u, v′⟩ for every u.

Theorem 7.3.4. Let V be a finite-dimensional inner product space and let B = {v1, v2, . . . , vn} be an (or-
dered) orthonormal basis for V . Let T be a linear operator on V and let A be the matrix of T in the ordered
basis B. Then akj = ⟨T (vj), vk⟩.

Proof. Since B is an orthonormal basis, we have

v =
n∑

k=1

⟨v, vk⟩vk.

The matrix A is defined by

T (vj) =
n∑

k=1

akjvk

and since

T (vj) =
n∑

k=1

⟨T (vj), vk⟩vk

we have, akj = ⟨T (vj), vk⟩.

Corollary 7.3.5. Let V be a finite-dimensional inner product space, and let T be a linear operator on V . In
any orthonormal basis for V , the matrix of T ∗ is the conjugate transpose of the matrix of T .

Proof. Let B = {v1, v2, . . . , vn} be an orthonormal basis for V , let A = [T ]B and B = [T ∗]B. By the
previous theorem,

akj = ⟨T (vj), vk⟩, bkj = ⟨T ∗(vj), vk⟩. (7.3.1)

By the definition of T ∗, we then have,

bkj = ⟨T ∗(vj), vk⟩
= ⟨vk, T ∗(vj)⟩
= ⟨T (vk), vj⟩
= akj .
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By Theorem 7.3.3, every linear operator on a finite-dimensional inner product space V has an adjoint on
V . In the infinite-dimensional case this is not always true. But in any ease there is at most one such operator
T ∗.

Let us now discuss a few properties of adjoint of linear operators.

Theorem 7.3.6. Let V be a finite-dimensional inner product space. If T and U are linear operators on V and
c be a scalar,

1. (T + U)∗ = T ∗ + U∗;

2. (cT )∗ = cT ∗;

3. (TU)∗ = U∗T ∗;

4. (T ∗)∗ = T .

Proof. Left as exercise.

Definition 7.3.7. A linear operator T is called self-adjoint if T = T ∗.

If B is an orthonormal basis for V , then [T ∗]B = [T ]∗B. Hence, T is self-adjoint if and only if its matrix in
every orthonormal basis is a self-adjoint matrix.

7.4 Unitary Operators

Before defining unitary operators, let us first define the notion of linear operators which preserve the underly-
ing inner products.

Definition 7.4.1. Let V and W be inner product spaces over the same field, and let T be a linear transformation
from V into W . We say that T preserves inner products if ⟨T (u), T (v)⟩ = ⟨u, v⟩. An isomorphism of V onto
W is a vector space isomorphism T of V onto W which also preserves inner products.

If T preserves inner products, then ∥T (u)∥ = ∥u∥ and so T is necessarily non-singular.

Theorem 7.4.2. Let V and W be finite-dimensional inner product spaces over the same field, having the same
dimension. If T is a linear transformation from V into W , the following are equivalent.

1. T preserves inner products.

2. T is an (inner product space) isomorphism.

3. T carries every orthonormal basis for V onto an orthonormal basis for W .

4. T carries some orthonormal basis for V onto an orthonormal basis for W .

Theorem 7.4.3. Let V and W be inner product spaces over the same field, and let T be a linear transformation
from V into W . Then T preserves inner products if and only if ∥T (u)∥ = ∥u∥ for every u in V .

Definition 7.4.4. A unitary operator on an inner product space is an isomorphism of the space onto itself.

The product of two unitary operators is unitary. For if U1 and U2 are two unitary operators, then U2U1 is
invertible and ∥U2U1(u)∥ = ∥U1(u)∥ = ∥u∥ for each u. Also, the inverse of a unitary operator is unitary
(verify). Since the identity operator is clearly unitary, we see that the set of all unitary operators on an inner
product space is a group, under the operation of composition.
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Theorem 7.4.5. Let U be a linear operator on an inner product space V . Then U is unitary if and only if the
adjoint U∗ of U exists and UU∗ = U∗U = I .

Proof. Suppose U is unitary. Then U is invertible and

⟨U(v), w⟩ = ⟨U(v), UU−1(w)⟩ = ⟨u, U−1(w)⟩

for all v, w. Hence, U−1 is the adjoint of U .
Conversely, suppose U∗ exists and UU∗ = U∗U = I . Then U is invertible and U−1 = U∗. We only need

to show that U preserves inner products. We have,

⟨U(v), U(w)⟩ = ⟨v, U∗U(w)⟩ = ⟨v, I(w)⟩ = ⟨v, w⟩

for all v, w.

Definition 7.4.6. A complex n× n matrix is called unitary if A∗A = I .

Theorem 7.4.7. Let V be a finite-dimensional inner product space and let U be a linear operator on V . Then
U is unitary if and only if the matrix of U in some (or every) ordered orthonormal basis is a unitary matrix.

Proof. Left as exercise.

Definition 7.4.8. A real or complex n× n matrix A is said to be orthogonal if AtA = I .

A real orthogonal matrix i s unitary ; and, a unitary matrix is orthogonal if and only if each of its entries is
real.

7.5 Normal Operators

Definition 7.5.1. Let V be a finite-dimensional inner product space and T a linear operator on V . We say that
T is normal if it commutes with its adjoint i.e., TT ∗ = T ∗T .

Any self-adjoint operator is normal, as is any unitary operator. Any scalar multiple of a normal operator
is normal; however, sums and products of normal operators are not generally normal. Although it is by no
means necessary, we shall begin our study of normal operators by considering self-adjoint operators.

Theorem 7.5.2. Let V be an inner product space and T a self-adjoint linear operator on V . Then each
characteristic value of T is real, and characteristic vectors of T associated with distinct characteristic values
are orthogonal.

Proof. Suppose c is a characteristic value of T , i.e., T (v) = cv for some non-zero vector v. Then

c⟨v, v⟩ = ⟨cv, v⟩
= ⟨T (v), v⟩
= ⟨v, T (v)⟩
= ⟨v, cv⟩
= c⟨v, v⟩.

Since ⟨v, v⟩ ̸= 0, we must have c = c. Suppose that T (w) = dw, w ̸= 0. Then

c⟨v, w⟩ = ⟨T (v), w⟩
= ⟨v, T (w)⟩
= ⟨v, dw⟩
= d⟨v, w⟩
= d⟨v, w⟩.

58



7.5. NORMAL OPERATORS

If c ̸= d, then ⟨v, w⟩ = 0.

Theorem 7.5.3. On a finite-dimensional inner product space of positive dimension, every self-adjoint operator
has a (non-zero) characteristic vector.

Proof. Let V be an inner product space of dimension n, where n > 0, and let T be a self-adjoint operator on
V . Choose an orthonormal basis B for V and let A = [T ]B. Since T = T ∗, we have A = A∗. Now let W
be the space of n × 1 matrices over C, with inner product ⟨X,Y ⟩ = Y ∗ X . Then U(X) = AX defines a
self-adj oint linear operator U on W . The characteristic polynomial, det(xI − A), is a polynomial of degree
n over the complex numbers ; every polynomial over C of positive degree has a root. Thus, there is a complex
number c such that det(cI − A) = O. This means that A − cI is singular, or that there exists a non-zero X
such that AX = cX . Since the operator U (multiplication by A ) is self-adjoint, it follows from the previous
theorem that c is real. If V is a real vector space, we may choose X to have real entries. For then A and A−cI
have real entries, and since A− cI is singular, the system (A− cI)X = 0 has a non-zero real solution X . It
follows that there is a non-zero vector α: in V such that Tα = cα.

Few Probable Questions

1. Define adjoint of a linear operator. Show that the adjoint of a linear operator over a finite dimensional
vector space exists.

2. What can you say about the matrix of the adjoint of a linear operator defined on a finite dimensional
vector space V ? Give complete justification.

3. Show that U is a unitary operator if and only if UU∗ = U∗U = I for the adjoint U∗ of U .
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Unit 8

Course Structure

• Bilinear and Quadratic forms: Bilinear forms, quadratic forms, Reduction and classification of quadratic
forms, Sylvester’s law of Inertia.

8.1 Introduction

A bilinear form on a real vector space V is a function f which assigns a number to each pair of elements of
V , a scalar from the underlying field, satisfying certain properties. We can begin with an example of a map
from Rn × Rn → R, where R is the underlying field, defined by

⟨X,Y ⟩ = XT .Y = x1y1 + · · ·+ xnyn.

This is the most common dot product, that we are familiar with. The property of the dot product which we
will use to generalize to bilinear forms is bilinearity: the dot product is a linear function from V to F , where
F is the underlying field, if one of the elements is fixed. Bilinear forms are meant to be a generalization of the
dot product on Rn.

Objectives

After reading this unit, you will be able to

• define bilinear forms and see certain examples of it

• learn properties related to them

• define quadratic forms and associated matrices

• define definiteness of a form and its associated matrices

• learn about the equivalent definitions of definiteness of a matrix and form

• solve problems related to the definiteness of matrices
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8.2 Bilinear Forms

Definition 8.2.1. Let V be a vector space over F . We define a bilinear form to be a function f : V × V → F
such that

f(v1 + v2, w) = f(v1, w) + f(v2, w), v1, v2, w ∈ V

f(v, w1 + w2) = f(v, w1) + f(v, w2), v, w1, w2 ∈ V

f(cv, w) = cf(v, w) = f(v, cw), v, w ∈ W, c ∈ F

We will often use the notation ⟨v, w⟩ for f(v, w).

The zero function from V × V into F is clearly a bilinear form. It is also true that any linear combination
of bilinear forms on V is again a bilinear form(check it). All this may be summarized by saying that the set
of all bilinear forms on V is a subspace of the space of all functions from V × V into F . We denote the space
of bilinear forms on V by L(V, V, F ).

Example 8.2.2. Let V be a vector space over the field F and let L1 and L2 be linear functions on V . Define
f by

f(u, v) = L1(u)L2(v).

If we fix v and regard f as a function of u, then we simply have a scalar multiple of the functional L1. And
fixing u, f is a scalar multiple of L2. Hence f is a bilinear form on V .

Example 8.2.3. Let m and n be positive integers and F a field. Let V be the vector space of m× n matrices
over F . Let A be a fixed m× n over F . Define

fA(X,Y ) = tr(XTAY ).

Then fA is a bilinear form on V . If X,Y, Z are m× n matrices over F , then

fA(cX + Z, Y ) = tr[(cX + Z)TAY ]

= tr(cXTAY ) + tr(ZTAY ) = cfA(X,Y ) + fA(Z, Y ).

Of course, we have used the fact that the transpose operation and the trace function are linear. It is even easier
to show that fA is linear as a function of its second argument. In the special case, n = 1, the matrix XTAY
is 1× 1 matrix, that is, a scalar, and the bilinear form is simply

fA(X,Y ) =
∑
i,j

Aijxiyj .

Example 8.2.4. Let F be a field. Let us find all bilinear forms on the space F 2. Suppose f is such a bilinear
form. If x = (x1, x2) and y = (y1, y2) are in F 2, then

f(x, y) = f(x1e1 + x2e2, y)

= x1f(e1, y) + x2f(e2, y)

= x1f(e1, y1e1 + y2e2) + x2f(e2, y1e1 + y2e2)

= x1y1f(e1, e1) + x1y2f(e1, e2) + x2y1f(e2, e1) + x2y2f(e2, e2).

Hence, f is completely determined by the four scalars Aij = f(ei, ej) = ⟨ei, ej⟩ by

f(x, y) = A11x1y1 +A12x1y2 +A21x2y1 +A22x2y2

=
∑
i,j

Aijxiyj .
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Thus, if X and Y are the coordinate matrices of x and y, and if A is the above matrix, then

f(x, y) = XTAY.

This can be generalized for any finite-dimensional vector spaces.

Definition 8.2.5. (Bilinear forms on Rn) Every bilinear form on Rn has the form

⟨x, y⟩ = xTAy =
∑
i,j

aijxiyj , x, y ∈ Rn

for some n × n matrix A and we also have aij = ⟨ei, ej⟩ for all i, j. ei is the n tuple of real numbers whose
ith entry is 1 and all other entries are 0.

Definition 8.2.6. Let V be a finite-dimensional vector space, and let B = {v1, . . . , vn} be an ordered basis
for V . If f is a bilinear form on V , the matrix of f in the ordered basis B is the n × n matrix A with entries
Aij = f(vi, vj). We shall denote this matrix by [f ]B.

Theorem 8.2.7. Let V be a finite-dimensional vector space over the field F . For each ordered basis B of V ,
the function which associates with each bilinear form on V , its matrix in the ordered basis B is an isomorphism
of the space L(V, V, F ) onto the space of n× n matrices over the field F .

Proof. We have seen that f → [f ]B is a one-one correspondence between the set of bilinear forms on V and
the set of all n× n matrices over F . That this is a linear transformation is easy to see, because

(cf + g)(vi, vj) = cf(vi, vj) + g(vi, vj)

for each i and j. This simply says that

[cf + g]B = c[f ]B + [g]B.

Corollary 8.2.8. If B = {v1, . . . , vn} is an ordered basis for V , and B∗ = {L1, . . . , Ln} be an ordered basis
for V ∗, then the n2 bilinear forms

fij(x, y) = Li(x)Lj(y), 1 ̸= i ̸= n, 1 ≤ j ≤ n

form a basis for L(V, V, F ). In particular, the dimension of L(V, V, F ) is n2.

The concept of the matrix of a bilinear form in an ordered basis is similar to that of the matrix of a lineal’
operator in an ordered basis. Just as for linear operators, we shall be interested in what happens to the matrix
representing a bilinear form, as we change from one ordered basis to another. So, suppose B = {v1, . . . , vn}
and B′

= {v′
1, . . . , v

′
n} two ordered bases for V and that f is a bilinear form on V . How are the matrices [f ]B

and [f ]B′ related? Well, let P be the (invertible) n× n matrix such that

[v]B = P [v]B′

for all v ∈ V . In other words, define P by

v
′
j =

n∑
i=1

Pijvi.
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For any vectors v, w ∈ V ,

f(v, w) = [v]TB [f ]B[v]B

= (P [v]B′ )T [f ]BP [w]B′

= [v]TB′ (P T [f ]BP )[w]B′ .

By the definition and uniqueness of the matrix representing f in the ordered basis B′
, we must have

[f ]B′ = P T [f ]BP.

One consequence of the change of basis formula is the following: If A and B are n×n matrices which repre-
sent the same bilinear form on V in (possibly) different ordered bases, then A and B have the same rank. For,
if P is an invertible n×n matrix and B = P TAP , it is evident that A and B have the same rank. This makes
it possible to define the rank of a bilinear form on V as the rank of any matrix which represents the form in an
ordered basis for V .

It is desirable to give a more intrinsic definition of the rank of a bilinear form. This can be done as follows
: Suppose f is a bilinear form on the vector space V . If we fix a vector v in V , then f(v, w) is linear as a
function of w. If we fix a vector v ∈ V , then f(v, w) is linear as a function of w. In this way, each fixed v
determines a linear functional on V ; let us denote this linear functional by Lf (v). To repeat, if v is a vector
in V , then Lf (v) is the linear functional on V whose value on any vector w is f(v, w). This gives us a
transformation v → Lf (v) from V into the dual space V ∗. Since

f(cv1 + v2, w) = cf(v1, w) + f(v2, w)

we see that
Lf (cv1 + v2) = cLf (v1) + Lf (v2)

that is, Lf is a linear transformation from V into V ∗.

In a similar manner, f determines a linear transformation Rf from V into V ∗. For each fixed w ∈ V ,
f(v, w) is linear as a function of v. We define Rf (w) to be the linear functional on V whose value on the
vector v is f(v, w).

Theorem 8.2.9. Let f be a bilinear form on the finite-dimensional vector space V . Let Lf and Rf be the linear
transformations from V into V ∗ defined by (Lf (v))(w) = f(v, w) = (Rf (w))(v). Then rank(Lf ) =rank(Rf ).

Definition 8.2.10. If f is a bilinear form on the finite-dimensional space V , the rank of f is the integer
r =rank(Lf ) =rank(Rf ).

Corollary 8.2.11. The rank of a bilinear form is equal to the rank of the matrix of the form in any ordered
basis.

Corollary 8.2.12. If f is a bilinear form on the n-dimensional vector space V , the following are equivalent:

1. rank(f) = n;

2. For each non-zero v ∈ V , there is a vector w ∈ V such that f(v, w) ≠ 0;

3. For each non-zero w ∈ V , there is a vector v ∈ V such that f(v, w) ≠ 0.

Definition 8.2.13. A bilinear form f on a vector space V is called non-degenerate (or non-singular) if it
satisfies conditions 2 and 3 of the above corollary.
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If V is finite-dimensional, then f is non-degenerate provided f satisfies any one of the three conditions of
the above corollary. In particular, f is non-degenerate (non-singular) if and only if its matrix in some (every)
ordered basis for V is a non-singular matrix.

Example 8.2.14. Let V = Rn, and let f be the bilinear form defined on v = (x1, . . . , xn) and w =
(y1, . . . , yn) by

f(v, w) = x1y1 + · · ·+ xnyn.

Then f is a non-degenerate bilinear form on Rn. The matrix of f in the standard ordered basis is the n × n
identity matrix

f(X,Y ) = XTY.

Example 8.2.15. Let V = P2 denote the space of real polynomials of degree at most 2. We can define a
bilinear form on V by

⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx, f, g ∈ V.

By definition, the matrix of the form is given by

aij = ⟨xi−1, xj−1⟩ =
∫ 1

0
xi+j−2dx =

1

i+ j + 2
.

Thus, the matrix of the form with respect to the standard basis is

A =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .

8.2.1 Symmetric Bilinear Forms

The main purpose of this section is to answer the following question : If f is a bilinear form on the finite-
dimensional vector space V, when is there an ordered basis B for V in which f is represented by a diagonal
matrix? We prove that this is possible if and only if f is a symmetric bilinear form, that is, f(v, w) = f(w, v).
The theorem is proved only when the scalar field has characteristic zero, that is, that if n is a positive integer
the sum 1 + · · ·+ 1 (n times) in F is not 0.

Definition 8.2.16. Let f be a bilinear form on the vector space V . We say that f is symmetric if f(v, w) =
f(w, v) for all v, w ∈ V .

If V is a finite-dimensional, the bilinear form f is symmetric if and only if its matrix A in some (or every)
ordered basis is symmetric, AT = A. To see this, one inquires when the bilinear form

f(X,Y ) = XTAY

is symmetric. This happens if and only if XTAY = Y TAX , for all column matrices X and Y . Since XTAY
is a 1× 1 matrix, we have XTAY = Y TATX . Thus f is symmetric if and only if Y TATX = Y TAX for all
X,Y . Clearly this just means that AT = A. In particular, one should note that if there is an ordered basis for
V in which f is represented by a diagonal matrix, then f is symmetric, for any diagonal matrix is a symmetric
matrix.

Definition 8.2.17. 1. (Positive definite) A bilinear form f on a real vector space V is positive definite, if

⟨v, v⟩ = f(v, v) > 0, v ̸= 0.

A real n× n matrix A is positive definite if xTAx > 0 for all x ̸= 0.
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2. (Negative definite) A bilinear form f on a real vector space V is negative definite, if

⟨v, v⟩ = f(v, v) < 0, v ≠ 0.

A real n× n matrix A is positive definite if xTAx < 0 for all x ≠ 0.

3. (Positive Semi-definite) A bilinear form f on a real vector space V is positive semi-definite, if

⟨v, v⟩ = f(v, v) ≥ 0, v ∈ V.

A real n× n matrix A is positive semi-definite if xTAx ≥ 0 for all x.

4. (Negative Semi-definite) A bilinear form f on a real vector space V is negative semi-definite, if

⟨v, v⟩ = f(v, v) ≤ 0, v ∈ V.

A real n× n matrix A is negative semi-definite if xTAx ≤ 0 for all x.

5. (Indefinite) A bilinear form f on a real vector space V is indefinite, if

⟨v, v⟩ = f(v, v) > 0, for some v ∈ V

and

⟨v, v⟩ = f(v, v) < 0, for some v ∈ V.

Example 8.2.18. 1. Consider the bilinear form on R2 defined by

f(x, y) = x1y1 − 2x1y2 − 2x2y1 + 5x2y2.

To check whether it is positive definite, we find

f(x, x) = x21 − 4x1x2 + 5x22

= (x1 − 2x2)
2 + x22 > 0

for x = (x1, x2) ≠ (0, 0). Thus, it is positive definite.

2. Consider the bilinear form on R2 defined by

f(x, y) = x1y1 + 2x1y2 + 2x2y1 + 3x2y2.

Again,

f(x, x) = x21 + 4x1x2 + 3x22

= (x1 + 2x2)
2 − x22 < 0

when x1 = −2x2 and x2 ≠ 0.
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8.3 Quadratic Forms

Definition 8.3.1. If f is a symmetric bilinear form, the quadratic form associated with f is the function q from
V into F defined by

q(v) = f(v, v).

Theorem 8.3.2. Any quadratic form can be represented by symmetric matrix.

Indeed, if aij ̸= aji, we replace them by new a
′
ij = a

′
ji =

aij+aji
2 , this does not change the corresponding

quadratic form.

Example 8.3.3. 1. The quadratic form f(x, y) = x2 + y2 is positive for all nonzero (x, y). Hence f is
positive definite.

2. The quadratic form f(x, y) = −x2 − y2 is negative for all nonzero (x, y). Hence f is negative definite.

3. The quadratic form f(x, y) = (x− y)2 is non-negative. This means that f is either zero or positive for
all (x, y). Hence f is positive semi-definite.

4. The quadratic form f(x, y) = −(x − y)2 is non-positive. This means that f is either zero or negative
for all (x, y). Hence f is negative semi-definite.

5. The quadratic form f(x, y) = x2− y2 is indefinite since it can take both positive as well as negative for
example, f(3, 1) = 9− 1 = 8 > 0 and f(1, 3) = 1− 9 = −8 < 0.

8.3.1 Definiteness of a 2 Variable Quadratic Form

Let f(x, y) = ax2 + 2bxy + cy2 which is equal to

f(x, y) =
[
x y

]
.

[
a b
b a

]
.

[
x
y

]
.

Here,

A =

[
a b
b a

]
is the symmetric matrix of the quadratic form. The determinant∣∣∣∣a b

b a

∣∣∣∣ = ac− b2

is called the discriminant of f . It can be easily seen that

ax2 + 2bxy + cy2 = a

(
ax+

b

a
y

)2

+
ac− b2

a
y2.

Let us use the notation D1 = a, D2 = ac− b2. Actually D1 and D2 are leading principal minors of A. Note
that there exists one more principal (non leading) minor (of degree 1) D

′
1 = c. Then

f(x, y) = D1

(
ax+

b

a
y

)2

+
D2

D1
y2.

From this expression we obtain:
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1. If D1 > 0 and D2 > 0, then the form x2 + y2 type, so it is positive definite;

2. If D1 < 0 and D2 > 0, then the form −x2 − y2 type, so it is negative definite;

3. If D1 > 0 and D2 < 0, then the form x2 − y2 type, so it is indefinite; If D1 < 0 and D2 > 0, then the
form −x2 + y2 type, so it is also indefinite.

Thus, if D2 < 0, then the form is indefinite.

Semidefiniteness depends not only on leading principal minors D1, D2 but also on all principal minors, in
this case on D

′
1 = c too.

4. If D1 ≥ 0, D
′
1 ≥ 0 and D2 ≥ 0, then the form is positive semidefinite.

Note that the condition D
′
1 ≥ 0 is necessary since the form f(x, y) = −y2 with a = 0, b = 0 and

c = −1 for which D1 = a ≥ 0, D2 = ac− b2 ≥ 0, nevertheless the form is not positive semidiefinite.

5. If D1 ≤ 0, D
′
1 ≤ 0 and D2 ≥ 0, then the form is negative semidefinite.

Note that the condition D
′
1 ≤ 0 is necessary since the form f(x, y) = y2 with a = 0, b = 0 and c = 1

for which D1 = a ≤ 0, D2 = ac− b2 ≥ 0, nevertheless the form is not negative semidiefinite.

8.3.2 Definiteness of a 3 Variable Quadratic Form

Let us start with the following example.

Example 8.3.4. Let f(x, y, z) = x2 + 2y2 − 7z2 − 4xy + 8xz. The symmetric matrix of this quadratic form
is  1 −2 4

−2 2 0
4 0 −7

 .

The leading principal minors of this matrix are

∣∣D1

∣∣ = 1,
∣∣D2

∣∣ = ∣∣∣∣ 1 −2
−2 2

∣∣∣∣ = −2,
∣∣D3

∣∣ =
∣∣∣∣∣∣
1 −2 4
−2 2 0
4 0 −7

∣∣∣∣∣∣ = −18.

Also, on simplification, we get

f(x, y, z) = x2 + 2y2 − 7z2 − 4xy + 8xz = |D1|l21 +
D2

D1
l22 +

D3

D3
l23,

where

l1 = x− 2y + 4z,

l2 = y − 4x,

l3 = z

That is, (l1, l2, l3) are linear combinations of (x, y, z). More precisely,l1l2
l3

 =

1 −2 4
0 1 −4
0 0 1

 .

xy
z

 ,
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where

P =

1 −2 4
0 1 −4
0 0 1


is a non-singular matrix (changing variables).

In general if

f(x, y, z) =
[
x y z

]
.

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

xy
z

 .

The following three determinants

∣∣D1

∣∣ = ∣∣a11∣∣ , ∣∣D1

∣∣ = ∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , ∣∣D3

∣∣ =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
are leading principal minors. It is possible to show that, if |D1| ̸= 0, |D2| ̸= 0, then

f(x, y, z) = |D1|l21 +
|D2|
|D1|

l22 +
|D3|
|D2|

l23,

where l1, l2, l3 are some linear combinations of x, y, z. This is called Lagrange’s Reduction. This implies the
following

1. The form is positive definite iff |D1| > 0, |D2| > 0, |D3| > 0, that is all principal minors are positive.

2. The form is negative definite iff |D1| < 0, |D2| > 0, |D3| < 0, that is all principal minors alternate in
sign starting with negative one.

Example 8.3.5. Determine the definiteness of the form f(x, y, z) = 3x2 + 2y2 + 3z2 − 2xy − 2yz.

The matrix of our form is  3 −1 0
−1 2 −1
0 −1 3

 .

The leading principal minors are

∣∣D1

∣∣ = 3 > 0,
∣∣D1

∣∣ = ∣∣∣∣ 3 −1
−1 2

∣∣∣∣ = 5 > 0,
∣∣D3

∣∣ =
∣∣∣∣∣∣
3 −1 0
−1 2 −1
0 −1 3

∣∣∣∣∣∣ = 18 > 0,

thus the form is positive definite.

The above process can be generalized for n variable, which we omit here. We arrive at the following theorems.

Theorem 8.3.6. 1. A quadratic form is positive definite if and only if

|D1| > 0, |D2| > 0, · · · , |Dn| > 0,

that is all principal minors are positive;
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2. A quadratic form is negative definite if and only if

|D1| < 0, |D2| > 0, |D3| < 0, , |D4| > 0, · · · ,

that is principal minors alternate in sign starting with negative one.

3. If some kth order leading principal minor is nonzero but does not fit either of the above two sign patterns,
then the form is indefinite.

Theorem 8.3.7. 1. A quadratic form is positive semidefinite if and only if all principal minors are ≥ 0;

2. A quadratic form is negative semidefinite if and only if all principal minors of odd degree are ≤ 0, and
all principal minors of even degree are ≥ 0.

8.3.3 Definiteness and Eigen Values

As we know a symmetric n× n matrix has n real eigenvalues (maybe some multiple).

Theorem 8.3.8. Given a quadratic form f(x) = xTAx and let c1, . . . , cn be eigen values of A. Then f is

1. positive definite iff ci > 0, i = 1, . . . , n;

2. negative definite iff ci < 0, i = 1, . . . , n;

3. positive semidefinite iff ci ≥ 0, i = 1, . . . , n;

4. negative semidefinite iff ci ≤ 0, i = 1, . . . , n;

8.4 Sylvester’s Law of Inertia

This section is all about the possible diagonal entries for the diagonalisation of a real quadratic form. This is
stated as the Sylvester’s Law of Inertia in the following.

Theorem 8.4.1. Suppose V is a finite-dimensional real vector space and Q is a quadratic form on V . Then
the numbers of positive diagonal entries, zero diagonal entries, and negative diagonal entries in any diagonal-
ization of Q is independent of the diagonalization.

The idea is to decompose V as a direct sum of three spaces, one on which Q acts as a positive-definite
quadratic form, one on which Q acts as the zero map and one on which Q acts as a negative-definite quadratic
form.

Few Probable Questions

1. Define bilinear forms. Determine the definiteness of the form f(x, y) = x2 + 2xy + y2.

2. Define quadratic forms. For which real numbers k is the quadratic form f(x, y) = kx2 − 6xy + ky2

positive-definite?

3. Determine the definiteness of the matrix −2 1 0
1 −2 0
0 0 2

 .
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Unit 9

Course Structure

• Legendre Polynomial: Generating function, Recurrence relations, Rodrigue’s formula, Orthogonal

property. Schlafli’s integral formula. Laplace’s first and second integral formula. Construction of

Legendre differential equation.

9.1 Introduction

We are familiar with the method of solving ordinary differential equations via series solutions. In particular,

we have learnt to find solutions of ODE around a regular point and a regular singular point for the given

ODE. We used to employ Frobenius Method to calculate the solution in the latter case. Here, we will study

the solutions of certain standard and "difficult" ODE which have applications in various fields using the same

method. We will start with Legendre polynomials and explore certain properties of them.

Objectives

After reading this unit, you will be able to

• find the solution of Legendre equations

• define Legendre polynomials

• represent the solutions in a standard manner for further use

• learn the orthogonal properties and Rodrigue’s formula for Legendre polynomials
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9.2 Legendre’s Equations and Legendre’s Polynomials

The differential equation of the form

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0 (9.2.1)

where n is a constant is called Legendre’s equation.The points x = ±1 are the regular singular points of the
equation. But the point x = 0 is an ordinary point of (9.2.1).

To check whether x = ∞ is a regular singular point of (9.2.1), set x = 1
t . Then

dx

dt
= − 1

t2

and hence
dy

dx
=

dy

dt

dt

dx
= −t2

dy

dt
.

Also,
d2y

dx2
=

d

dt

(
dy

dt
.
dt

dx

)
dt

dx
= t4

dy

dt2
+ 2t3

dy

dt
.

Hence equation (9.2.1) becomes

t2(t2 − 1)
d2y

dt2
+ 2t3

dy

dt
+ n(n+ 1)y = 0. (9.2.2)

t = 0 is clearly a regular singular point of (9.2.2), which implies that x = ∞ is a singular point of (9.2.1).
Now, check that

lim
t→0

2t4

t2(t2 − 1)
= 0 & lim

t→0
t2

n(n+ 1)

t2(t2 − 1)
= −n(n+ 1).

Hence t = 0 is a regular singular point of (9.2.2).

Consider the series solution of (9.2.2) about t = 0, and let

y = ts
∞∑

m=0

amtm

be a solution of (9.2.2) such that a0 ̸= 0. Then

dy

dt
=

∞∑
m=0

(m+ s)amts+m−1 and
d2y

dt2
=

∞∑
m=0

(m+ s)(m+ s− 1)amts+m−2.

Then (9.2.2) becomes
∞∑

m=0

{(m+s−2)(m+s−1)am−2−(m+s+n)(m+s−n−1)am}tm−(s+n)(s−n−1)a0−(s+n+1)(s−n)a1t = 0.

Then the indicial equation is

−(s+ n)(s− n− 1)a0 = 0 =⇒ s = −n, n+ 1, since a0 ̸= 0.

When s = −n, a1 = 0 and when s = n + 1, a1 = 0. Hence a1 = 0 in all case and the general recurrence
relation is

am =
(m+ s− 2)(m+ s− 1)

(m+ s− n)(m+ s− n− 1)
, m ≥ 2.
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Since a1 = 0, so a3 = a5 = · · · = a2m+1 = · · · = 0.

Now,

a2 =
s(s+ 1)

(s+ n+ 2)(s− n+ 1)
a0

a4 =
s(s+ 1)(s+ 2)(s+ 3)

(s+ n+ 2)(s+ n+ 4)(s− n+ 1)(s− n+ 3)
a0

...

Let n be a positive integer. Taking m = n+ 1, we have

an+1 =
(n+ s)(n+ s− 1)

(2n+ s+ 1)s
an−1, an+2 =

(n+ s)(n+ s+ 1)

(2n+ s+ 2)(s+ 1)
an.

When s = −n,

a2 = − n(n− 1)

2(2n− 1)
a0, a4 =

n(n− 1)(n− 2)(n− 3)

2.4.(2n− 1)(2n− 3)
a0, . . .

and an+1 = an+2 = 0. Then

y = a0

(
xn − n(n− 1)

2(2n− 1)
xn−2 +

n(n− 1)(n− 2)(n− 3)

2.4.(2n− 1)(2n− 3)
xn−4 + · · ·

)
. (9.2.3)

Taking s = n+ 1, we have

y = a0

(
x−n−1 − (n+ 1)(n+ 2)

2(2n+ 3)
x−n−3 +

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

2.4.(2n+ 3)(2n+ 5)
x−n−5 + · · ·

)
. (9.2.4)

When n is a positive integer, the roots of the indicial equation differ by 2n+1, which is an integer. There
could be problem in evaluating a2n+1 for s = −n. But, an+1 = an+2 = · · · = 0, and hence we don’t face
that problem.

When n = 1, y1 = a0x.

When n = 2, y1 = a0
(
x2 − 1

3

)
.

When n = 3, y1 =
(
x3 − 3

5x
)
.

If we take

a0 =
1.3.5 . . . (2n− 1)

n!
,

then the solution of (9.2.2) is called the Legendre function of first kind or Legendre Polynomial of degree
n and is denoted by Pn(x). Thus, Pn(x) is a solution of (9.2.1). But even if n is a positive integer, solution
(9.2.3) is an infinite series. In this case if we take

a0 =
n!

1.3.5 . . . (2n+ 1)
,

then solution (9.2.3) is denoted by Qn(x) and is called the Legendre function of second kind. Qn(x) is not a
polynomial and it is linearly independent from Pn(x) and we get the general solution of (9.2.1) as

y = APn(x) +BQn(x).
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Definition 9.2.1. Legendre Polynomial of degree n is defined as

Pn(x) =
1.3.5 . . . (2n− 1)

n!

(
xn − n(n− 1)

2(2n− 1)
xn−2 +

n(n− 1)(n− 2)(n− 3)

2.4.(2n− 1)(2n− 3)
xn−4 + · · ·

)
(9.2.5)

The general term of this polynomial is

(−1)r
n(n− 1)(n− 2) . . . (n− 2r + 1)

2.4 . . . 2r(2n− 1)(2n− 3) . . . (2n− 2r + 1)

1.3.5 . . . (2n− 1)

n!
xn−2r (9.2.6)

Now,

1.3.5 . . . (2n− 1) =
1.2.3. . . . (2n)

2.4. . . . (2n)
=

(2n)!

2n.n!
.

Also,

n(n− 1)(n− 2) . . . (n− 2r + 1) =
n!

(n− 2r)!
.

2.4. . . . (2r) = 2r.r!.

And

(2n− 1)(2n− 3) . . . (2n− 2r + 1) =
(2n)!(n− r)!

2r.n!(2n− 2r)!
.

So, using these things, (9.2.6) becomes

(−1)r
(2n− 2r)!

2nr!(n− 2r)!(n− r)!
xn−2r.

(9.2.5) is a polynomial of degree n. Hence n − 2r ≥ 0 or 1 according as n is even or odd, that is, r ≤
[
n
2

]
.

Hence, Legendre polynomial of degree n is given by

Pn(x) =

[n2 ]∑
r=0

(−1)r
(2n− 2r)!

2nr!(n− 2r)!(n− r)!
xn−2r.

Determination of few Legendre Polynomials

For n = 0, we have

P0(x) = (−1)0
(2.0− 2.0)!

200!0!0!
= 1.

Similarly, putting n = 1, 2, 3, 4 we get

P1(x) = x

P2(x) =
3

2
x2 − 1

2

P3(x) =
5

3
x3 − 3

2
x

P4(x) =
35

8
x4 − 15

4
x2 +

3

8

P5(x) =
63

8
x5 − 35

4
x3 +

15

8
x

P6(x) =
231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16
.
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Generating Function for Legendre Polynomial

We shall now show that Pn(x) is the coefficient of zn in the expansion of (1 − 2xz + z2)−1/2 in ascending
powers of z.The function

w(x, z) = (1− 2xz + z2)−1/2

is the generating function for Legendre polynomials

Theorem 9.2.2. Show that

w(x, z) =

∞∑
n=0

Pn(x).z
n,

holds for sufficiently small values of |z|.

Proof. We know that,

Pn(x) =

[n2 ]∑
r=0

(−1)r
(2n− 2r)!

2nr!(n− 2r)!(n− r)!
xn−2r.

When
∣∣2xz − z2

∣∣ < 1, the expression (1 − 2xz + z2)−1/2can be expanded in a series of ascending powers
of
(
2xz − z2

)
. Moreover if |2xz|+

∣∣z2∣∣ < 1 the powers can be multiplied out and the resulting series can be
rearranged in any manner. Thus using the expansion

(1− a)−1/2 = 1 +
a

2
+

(−1/2)(−1/2− 1)

2!
a2 +

(−1/2)(−1/2− 1)(−1/2− 2)

3!
a3 + · · ·

= 1 +
a

2
+

1.3

22.2!
a2 +

1.3.5

23.3!
a3 + · · ·

=

∞∑
k=0

1.3.5 . . . (2k − 1)

k!.2k
ak.

we get,

(1− 2xz + z2)−1/2 =
∞∑
k=0

1.3.5 . . . (2k − 1)

k!.2k
(2xz − z2)k

=
∞∑
k=0

1.2.3 . . . (2k − 1). (2k)

2.4.6... (2k) . (k!.2k)
(2xz − z2)k

=
∞∑
k=0

(2k)!

22k(k!)2
(2xz − z2)k

=
∞∑
k=0

(2k)!

22k(k!)2

k∑
s=0

(
k

s

)
(2xz)k(−z2)k−s

=
∞∑
k=0

(2k)!

22k(k!)2

k∑
s=0

(
k

s

)
(2x)k(−1)k−sz2k−s

=
∞∑
k=0

∞∑
s=0

(−1)k−s (2k)!

22k(k!)2
k!

s!(k − s)!
(2x)sz2k−s.

Consider the portion (k − s)!, where s varies from 0 to k. If s = k + 1, (k − s)! = (−1)! = ∞. Similarly,
for other s > k, (k − s)! → ∞ and so, the terms for s > k becomes zero and the summation can be extended
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from k to ∞. Interchanging the summations, we get

w(x, z) =
∞∑
s=0

∞∑
k=0

(−1)k−s (2k)!

22k(k!)2
k!

s!(k − s)!
(2x)sz2k−s.

When k = 0, 1, . . . , (s−1), we get (k−s)! = ∞. And when k = s, (k−2)! = 0! = 1. So, we can effectively
start the summation from k = s instead of k = 0 and the equation becomes

w(x, z) =
∞∑
s=0

∞∑
k=s

(−1)k−s (2k)!

22k(k!)2
k!

s!(k − s)!
(2x)sz2k−s.

Putting k − s = p, and eliminating k, we get

w(x, z) =
∞∑
s=0

∞∑
p=0

(−1)p
(2p+ 2s)!

22p+s(s+ p)!

1

s!p!
xsz2p+s.

Put 2p+ s = n and eliminate s. Then since p varies from 0 to ∞, s varies from 0 to ∞, n varies from 0 to ∞.
Now, s ≥ 0. So, n− 2p ≥ 0 which implies that p ≤

[
n
2

]
. Since p is an integer, p ≤

[
n
2

]
. So,

w(x, z) =
∞∑
n=0

[n2 ]∑
p=0

(−1)p
(2n− 2p)!

2n(n− p)!

1

(n− 2p)!p!
xn−2pzn

=
∞∑
n=0

zn
[n2 ]∑
p=0

(−1)p
(2n− 2p)!

2n(n− p)!

1

(n− 2p)!p!
xn−2p

=

∞∑
n=0

Pn(x)z
n.

Show that i) Pn(1) = 1, ii) Pn(−1) = (−1)n , iii) P2n+1(0) = 0, iv) P2n(0) = (−1)n 1.3.5...(2n−1)
n!.2n .

Solution. We use the relation
∞∑
n=0

Pn(x)z
n = (1− 2xz + z2)−1/2

to prove the results.
i) Put x = 1 in the above relation. Then we get

∞∑
n=0

Pn(1)z
n = (1− 2z + z2)−1/2

= (1− z)−1

= 1 + z + z2 + ...+ zn + ...

=

∞∑
n=0

zn.

Therefore
Pn(1) = 1.
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ii) Put x = −1 in the above relation. Then we get

∞∑
n=0

Pn(−1)zn = (1 + 2z + z2)−1/2

= (1 + z)−1

= 1− z + z2 − ...+ (−1)n zn + ...

=
∞∑
n=0

(−1)n zn.

Therefore
Pn(−1) = (−1)n .

To prove iii) and iv) put x = 0 in the above relation. Then we get

∞∑
n=0

Pn(0)z
n = (1 + z2)−1/2

= 1− 1

2
z2 +

1.3

22.2!
z4 − 1.3.5

23.3!
z6 + ...+ (−1)n

1.3.5.... (2n− 1)

2n.n!
z2n + ...

Therefore the coefficients of the odd powers of z are 0 i.e.,

P2n+1(0) = 0

and those for the even powers of z we get

P2n(0) = (−1)n
1.3.5 . . . (2n− 1)

n!.2n
.

■

Show that Pn(x) is an even or odd function of x according as n is even or odd respectively.

Solution. We have
∞∑
n=0

Pn(x)z
n = (1− 2xz + z2)−1/2.

Now
∞∑
n=0

Pn(−x)zn = (1 + 2xz + z2)−1/2

=
{
1− 2x (−z) + (−z)2

}−1/2

=
∞∑
n=0

Pn(x) (−z)n

=
∞∑
n=0

(−1)n Pn(x)z
n.

Therefore
Pn(−x) = (−1)n Pn(x).

and hence the result follows. ■

76



9.3. RODRIGUE’S FORMULA FOR LEGENDRE’S POLYNOMIALS

9.3 Rodrigue’s Formula for Legendre’s Polynomials

For integral values of n, Legendre Polynomials Pn(x) satisfy

1

2nn!

dny

dxn
(x2 − 1)n = Pn(x),

called the Rodrigue’s formula.

dn

dxn
(x2 − 1)n =

dn

dxn

[
n∑

r=0

(
n

r

)
(−1)r(x2)n−r

]

=
n∑

r=0

(−1)r
(
n

r

)
dn

dxn
x2n−2r

=

m∑
r=0

(−1)r
(
n

r

)
(2n− 2r)!

(n− 2r)!
xn−2r,

where m = n
2 or n−1

2 according as n is even or odd.
For r > m, the powers of x in x2n−2r becomes less than n, and then dn

dxnx2n−2r vanishes.
For r ≤ m, dn

dxnx2n−2r does not vanish.
Therefore

dn

dxn
(x2 − 1)n =

m∑
r=0

(−1)r
n!(2n− 2r)!

r! (n− r)!(n− 2r)!
xn−2r

1

2nn!

dn

dxn
(x2 − 1)n =

1

2nn!

m∑
r=0

(−1)r
n!(2n− 2r)!

r! (n− r)!(n− 2r)!
xn−2r

=

[n2 ]∑
r=0

(−1)r
(2n− 2r)!

2n.r! (n− r)!(n− 2r)!
xn−2r

= Pn(x).

9.4 Recurrence Relations of Legendre Polynomials

The Legendre polynomials Pn(x) satisfies the following recurrence relations.
1) (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0.
Using generating function of Pn(x) we get

w(x, z) = (1− 2xz + z2)−1/2 =

∞∑
n=0

znPn(x). (9.4.1)

Differentiating equation (9.4.1) with respect to z, we get

∂w

∂z
= −1

2
(1− 2xz + z2)−3/2(−2x+ 2z)−1/2 =

∞∑
n=0

nzn−1Pn(x)
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i.e.,

(x− z) (1− 2xz + z2)−3/2 =

∞∑
n=0

nzn−1Pn(x)

(x− z) (1− 2xz + z2)−1/2 =
∞∑
n=0

nzn−1(1− 2xz + z2)Pn(x)

(x− z)
∞∑
n=0

znPn(x) = (1− 2xz + z2)
∞∑
n=0

nzn−1Pn(x).

Equating the coefficient of zn from both sides of the above identity we get

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0. (9.4.2)

2) nPn(x) = xP
′
n(x)− P

′
n−1(x).

Differentiating equation (9.4.1) with respect to x, we get

∂w

∂x
= −1

2
(1− 2xz + z2)−3/2(−2z) =

∞∑
n=0

znP ′
n(x)

i.e.,

z(1− 2xz + z2)−3/2 =

∞∑
n=0

znP ′
n(x)

z (x− z) (1− 2xz + z2)−3/2 = (x− z)
∞∑
n=0

znP ′
n(x)

Equating the coefficients of zn on both sides, we get

nPn(x) = xP
′
n(x)− P

′
n−1(x). (9.4.3)

3) P
′
n+1(x) = (2n+ 1)Pn(x) + P

′
n−1(x).

Differentiating (9.4.2) with respect to x we get

(n+ 1)P ′
n+1(x)− (2n+ 1)Pn(x)− (2n+ 1)xP ′

n(x) + nP ′
n−1(x) = 0.

Using relation (9.4.3),

(n+ 1)P ′
n+1(x)− (2n+ 1)Pn(x)− (2n+ 1)

{
nPn(x) + P

′
n−1(x)

}
+ nP ′

n−1(x) = 0

(n+ 1)P ′
n+1(x)− (2n+ 1)(n+ 1)Pn(x)− (n+ 1)P ′

n−1(x) = 0.

Cancelling the factor (n+ 1), we get

P
′
n+1(x) = (2n+ 1)Pn(x) + P

′
n−1(x). (9.4.4)

4) (n+ 1)Pn(x) = P
′
n+1(x)− xP

′
n(x)

Adding relation (9.4.3) and (9.4.4) we get

(n+ 1)Pn(x) = P
′
n+1(x)− xP

′
n(x). (9.4.5)
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5) (1− x2)P
′
n(x) = n {Pn−1(x)− xPn(x)}

Replacing n by n− 1 in (9.4.5) we get

nPn−1(x) = P
′
n(x)− xP

′
n−1(x).

Using relation (9.4.3) we get

nPn−1(x) = P
′
n(x)− x

{
xP

′
n(x)− nPn(x)

}
=

(
1− x2

)
P

′
n(x) + xnPn(x).

Rearranging we get
(1− x2)P

′
n(x) = n {Pn−1(x)− xPn(x)} (9.4.6)

6) (1− x2)P
′
n(x) = (n+ 1) {xPn(x)− Pn+1(x)}

Replacing n by n+ 1 in (9.4.3) we get

(n+ 1)Pn+1(x) = xP
′
n+1(x)− P

′
n(x).

Using relation (9.4.5) we get

(n+ 1)Pn+1(x) = x
{
(n+ 1)Pn(x) + xP

′
n(x)

}
− P

′
n(x)

= (n+ 1)xPn(x) + x2P
′
n(x)− P

′
n(x)

= (n+ 1)xPn(x)− (1− x2)P
′
n(x).

Rearranging we get
(1− x2)P

′
n(x) = (n+ 1) {xPn(x)− Pn+1(x)} (9.4.7)

7) (2n+ 1)
(
x2 − 1

)
P

′
n(x) = n (n+ 1) {Pn+1(x)− Pn−1(x)}

Multiplying (9.4.6) by n+ 1 and (9.4.7) by n and adding we get

− ′
( − ′
n+ 1) (1 x2)Pn(x) + n(1 x2)Pn(x) = n (n+ 1){Pn 1(x) xPn(x) + n (n+ 1){ xPn( )− − } x

− Pn+1(x)}(2n+ 1)
(
1− x2

)
P

′
n(x) = n (n+ 1) {Pn−1(x)− Pn+1(x)} .

Therefore
(2n+ 1)

(
x2 − 1

)
P

′
n(x) = n (n+ 1) {Pn+1(x)− Pn−1(x)} . (9.4.8)

The relation (9.4.8) is called Beltrami’s relation.
8) P

′
n+1(x)− 2xPn(x) + Pn−1(x)− Pn(x) = 0.

Taking logarithm on both sides of (9.4.1) and then differentiating with respect to x, we get

d

dx
[ln((1− 2xz + z2)−1/2)] =

d

dx

[
ln

( ∞∑
n=0

znPn(x)

)]

or,
1

2

2z

1− 2xz + z2
=

∑∞
n=0 z

nP
′
n(x)∑∞

n=0 z
nPn(x)

or, (1− 2xz + z2)
∞∑
n=0

znP
′
n(x) = z

∞∑
n=0

znPn(x)

Equating the coefficients of zn on both sides, we get

P
′
n(x)− 2xP

′
n−1(x) + P

′
n−2(x) = Pn−1(x).

79



UNIT 9.

Replacing n by n+ 1, we get,

P
′
n+1(x)− 2xPn(x) + Pn−1(x)− Pn(x) = 0. (9.4.9)

8) nPn(x) = xP
′
n(x)− P

′
n−1(x).

Differentiating (9.4.8) with respect to z, we get,

x− z

(1− 2xz + z2)3/2
=

∞∑
n=1

nPn(x)z
n−1 (9.4.10)

Again, differentiating (9.4.8) with respect to x, we get,

z

(1− 2xz + z2)3/2
=

∞∑
n=0

P
′
n(x)z

n (9.4.11)

Multilying (9.4.10) by z we get

z (x− z)

(1− 2xz + z2)3/2
=

∞∑
n=1

nPn(x)z
n. (9.4.12)

Multilying (9.4.11) by (x− z) we get

z (x− z)

(1− 2xz + z2)3/2
=

∞∑
n=1

(x− z)P
′
n(x)z

n. (9.4.13)

Subtracting (9.4.13) from (9.4.12) we get

(x− z)
∞∑
n=0

P
′
n(x)z

n =
∞∑
n=1

nPn(x)z
n. (9.4.14)

Equating the coefficients of zn from both sides of (9.4.14) we get

nPn(x) = xP
′
n(x)− P

′
n−1(x). (9.4.15)

9.5 Orthogonality Properties of Legendre’s Polynomials

Definition 9.5.1. A sequence of functions {ϕn (x)} is said to be orthogonal in the interval [a, b] with the
weight function ω (x) if

i)
∫ b
a ω (x)ϕm(x)ϕn(x)dx = 0 for m ̸= n

ii)
∫ b
a ω (x)ϕm(x)ϕn(x)dx ̸= 0 for m = n and m,n are positive integers.

The orthogonal functions have the remarkable property that any integrable function over a given interval
can be expanded in a series of orthogonal functions over that intervals.

We will show that the Legendre polynomials are orthogonal in the interval [−1, 1] with the weight function
ω (x) = 1, i.e.,

i)
∫ 1
−1 Pm(x)Pn(x)dx = 0 for m ̸= n

ii)
∫ 1
−1 Pm(x)Pn(x)dx = 2

2m+1 for m = n and m,n are positive integers.
First consider m ̸= n.
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Legendre equation of order m is

(1− x2)
d2y

dx2
− 2x

dy

dx
+m(m+ 1)y = 0.

Pm(x) is a solution of the above equation.
So,

(1− x2)P
′′
m(x)− 2xP

′
m(x) +m(m+ 1)Pm(x) = 0. (9.5.1)

Also, Pn(x) is a solution of Legendre equation of order n.
So,

(1− x2)P
′′
n (x)− 2xP

′
n(x) +m(m+ 1)Pn(x) = 0. (9.5.2)

Multiplying (9.5.1) by Pn(x) and (9.5.2) by Pm(x) and subtracting, we get (1−x2)[P
′′
m(x)Pn(x)−P

′′
n (x)Pm(x)]−

2x[P
′
m(x)Pn(x)− P

′
n(x)Pm(x)] + [m(m+ 1)− n(n+ 1)]Pm(x)Pn(x) = 0

i.e.,

dy

dx
[(1− x2){P ′

m(x)Pn(x)− P
′
n(x)Pm(x)}] + [m(m+ 1)− n(n+ 1)]Pm(x)Pn(x) = 0

Integrating both sides with respect to x from −1 to 1, we get∫ 1

−1

d

dx
[(1− x2){P ′

m(x)Pn(x)− P
′
n(x)Pm(x)}]dx = (n−m)(n+m+ 1)

∫ 1

−1
Pm(x)Pn(x)dx

or, (n−m)(n+m+ 1)

∫ 1

−1
Pm(x)Pn(x)dx = [(1− x2){P ′

m(x)Pn(x)− P
′
n(x)Pm(x)}]1−1

= 0

or,
∫ 1

−1
Pm(x)Pn(x)dx = 0.

Now consider m = n and m,n are positive integers.
We have from the generating function that

(1− 2xz + z2)−1/2 =

∞∑
n=0

znPn(x). (9.5.3)

Replacing n by m in (9.5.3), we have

(1− 2xz + z2)−1/2 =

∞∑
m=0

zmPm(x). (9.5.4)

Multiplying (9.5.3) and (9.5.4), we get

(1− 2xz + z2)−1 =

∞∑
m=0

∞∑
n=0

zn+mPn(x)Pm(x).

Integrating both sides with respect to x from −1 to 1, we get∫ 1

−1
(1− 2xz + z2)−1dx =

∫ 1

−1

∞∑
m=0

∞∑
n=0

zn+mPn(x)Pm(x)dx

=

∞∑
m=0

∞∑
n=0

∫ 1

−1
Pn(x)Pm(x)zn+mdx

=

∞∑
n=0

∫ 1

−1
Pn(x)Pn(x)z

2ndx
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Now, ∫ 1

−1
(1− 2xz + z2)−1dx =

1

z
ln

(
1 + z

1− z

)
.

Hence,
∞∑
n=0

∫ 1

−1
Pn(x)Pn(x)z

2ndx =
2

z

{
z +

z3

3
+

z5

5
+ · · ·

}
=

∞∑
n=0

2z2n

2n+ 1
.

Hence, equating the like coefficients from both sides, we get∫ 1

−1
Pn(x)Pn(x)z

2ndx =
2

2n+ 1
.

9.5.1 Expansion of a given function in a series of Legendre polynomials

Let f (x) be any function piecewise continuous over the interval [−1, 1] . We express f (x) in a series of
Legendre polynomials as

f (x) =
∞∑
n=0

anPn(x) (9.5.5)

Multiplying (9.5.5) by Pm(x) and integrating from −1 to +1 we get∫ 1

−1
f (x)Pm(x)dx =

∞∑
n=0

an

∫ 1

−1
Pm(x)Pn(x)dx

= am

∫ 1

−1
P 2
m(x)dx

=
2am

2m+ 1
.

Thus

am =
2m+ 1

2

∫ 1

−1
f (x)Pm(x)dx. (9.5.6)

From (9.5.6) we can determine the coefficients am for m = 0, 1, 2, ... in the equation (9.5.5).
In particular let f (x) = b0+b1x+...+bkx

k be a polynomial of degree k, then using the fact
∫ 1
−1 x

rPm(x)dx =
0 if r < m we get ∫ 1

−1
f (x)Pm(x)dx =

∫ 1

−1

(
b0 + b1x+ ...+ bkx

k
)
Pm(x)dx

= 0, k < m.

Thus
ak+1 = ak+2 = ... = 0.

Hence from (9.5.5) we can express f (x) as a terminating series of Legendre polynomials

f (x) =

k∑
n=0

anPn(x).

Therefore any polynomial f (x) of degree k can be expanded by a series of Legendre polynomials P0(x),
P1(x), ..., Pk(x).

82



9.5. ORTHOGONALITY PROPERTIES OF LEGENDRE’S POLYNOMIALS

Exercise 9.5.2. 1. Show that (2n+ 1)P 2
n − (2n− 1)P 2

n−1 =
d
dx

{
xP 2

n + xP 2
n−1 − 2PnPn−1

}
2. Show that Pn(x) is a solution of Legendre equation of order n.

3. Show that
∫ 1
−1 Pn(x)dx = 2, if n = 0 and

∫ 1
−1 Pn(x)dx = 0, if n ≥ 1.

4. Show that
∫ 1
−1 x

mPn(x)dx = 0 if m < n.

5. Evaluate
∫ 1
−1 x

mPn(x)dx if m ≥ n.

6. Expand x3 − 7x2 + 3x+ 2 in a series of Legendre polynomials in [−1, 1] .

7. Expand f (x) in a series of Legendre polynomials in [−1, 1] , where f (x) = 0 for −1 ≤ x ≤ 0 and
f (x) = x for 0 ≤ x ≤ 1.

8. Show that all the roots of Pn(x) = 0 are real and distinct and lie between −1 to +1.

Few Probable Questions

1. Prove that the Legendre polynomials are orthogonal.

2. State and prove the Rodrigue’s formula.

3. Prove that for any non-negative integer n, we have P
′
n+1(x)− 2xPn(x) + P

′
n−1(x)− Pn(x) = 0.

4. Prove the following:

(a) Pn(1) = 1, Pn(−1) = (−1)n.

(b) P
′
n(1) =

n(n+1)
2 , and P

′
n(−1) = (−1)n−1 n(n+1)

2

(c) Pn(−x) = (−1)nPn(x). Hence deduce that Pn(−1) = (−1)n.
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Unit 10

Course Structure

• Bessel’s function: Generating function, Recurrence relation, Representation for the indices 1/2, −
1/2, 3/2 and −3/2. Bessel’s integral equation. Bessel’s function of second kind.

Objectives

After reading this section, you will be able to

• solve Bessel’s equations by Frobenius method

• deduce the generating functions for integral index

• deduce the recurrence relations for Bessel’s functions

• deduce the orthogonality condition for Bessel’s functions

• solve related problems

10.1 Bessel’s Equation and Bessel’s Functions

The differential equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (10.1.1)

where n is a constant, is called a Bessels’s equation whose solution gives the Bessel’s functions. These are an
orthogonal sequence of functions that have many closely related definitions. This unit is dedicate to the study
of Bessel’s functions and its properties.

To solve the differential equation (10.1.1), we see that x = 0 is a regular singular point of (10.1.1) (Verify!).
We will thus attempt to solve it about x = 0 by Frobenius method. The resulting series solution is valid in a
neighborhood of x = 0. Let us assume the solution to be

y =
∞∑

m=0

cmxm+s, where c0 ̸= 0
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and s is to be determined. Thus

dy

dx
=

∞∑
m=0

(m+ s)cmxm+s−1, &
d2y

dx2
=

∞∑
m=0

(m+ s)(m+ s− 1)cmxm+s−2

Thus, (10.1.1) becomes

∞∑
m=0

(m+ s)(m+ s− 1)cmxm+s +
∞∑

m=0

(m+ s)cmxm+s +
∞∑

m=0

cmxm+s+2 − n2
∞∑

m=0

cmxm+s = 0

or,
∞∑

m=0

{
(m+ s)(m+ s− 1) + (m+ s)− n2

}
cmxm+s +

∞∑
m=0

cmxm+s+2 = 0

or,
∞∑

m=0

(m+ s+ n)(m+ s− n)cmxm +
∞∑

m=2

cm−2x
m = 0

or,
∞∑

m=2

{(m+ s+ n)(m+ s− n)cm + cm−2}xm + (s+ n)(s− n)c0 + (1 + s+ n)(1 + s− n)c1x = 0.

The indicial equation is

(s+ n)(s− n)c0 = 0 =⇒ s = −n, n, since c0 ̸= 0

and the general recurrence relation is

cm = − 1

(m+ s+ n)(m+ s− n)
cm−2, m ≥ 2.

When s = n, we have (1 + n− n)(1 + n+ n)c1 = 0 which implies c1 = 0 if n ̸= −1/2.
When s = −n, we have (1− n− n)(1− n+ n)c1 = 0 which implies c1 = 0 if n ̸= 1/2.

Case I: When n ̸= 1/2, then c1 = 0. Then

c2 = − 1

(2 + s+ n)(2 + s− n)
c0

c4 =
1

(2 + s+ n)(4 + s+ n)(2 + s− n)(4 + s− n)
c0

c6 = − 1

(2 + s+ n)(4 + s+ n)(6 + s+ n)(2 + s− n)(4 + s− n)(6 + s− n)
c0

...

c2m = (−1)m
1

(2 + s+ n)(4 + s+ n) . . . (2m+ s+ n)(2 + s− n)(4 + s− n) . . . (2m+ s− n)
c0

and c1 = c3 = c5 = · · · = c2m+1 = · · · = 0. Thus, we get the solution as

y = c0x
s

[
1− 1

(2 + s+ n)(2 + s− n)
x2 + · · ·

]
Putting s = n, we get

y = y1 = c0x
n

[
1− x2

4(n+ 1)
+

x4

4.8.(n+ 1)(n+ 2)
− · · ·

]
. (10.1.2)
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Putting s = −n, we get

y = y2 = c
′
0x

−n

[
1− x2

4(1− n)
+

x4

4.8.(1− n)(2− n)
− · · ·

]
. (10.1.3)

The particular solution (10.1.2) of (10.1.1), taking

c0 =
1

2nΓ(n+ 1)

is called the Bessel’s function of first kind of order n and denoted by Jn(x), that is,

Jn(x) =
xn

2nΓ(n+ 1)

[
1− x2

4(1− n)
+

x4

4.8.(1− n)(2− n)
− · · ·

]
.

The general term of Jn(x) is, on simplification,

(−1)r.
1

r!(n+ 1) . . . (n+ r).Γ(n+ 1)

xn+2r

2n+2r
.

Now,
Γ(n+ 1) = nΓ(n).

Thus,
Γ(n+ r + 1) = (n+ r)(n+ r − 1) . . . (n+ 1)Γ(n+ 1).

Hence, the general term of the summation in Jn(x) is

(−1)r.
x2r+n

22r+nΓ(r + 1).Γ(n+ r + 1)
.

Thus, we can now formally define the Bessel’s function as

Definition 10.1.1. The Bessel’s function of first kind, of order n is defined as

Jn(x) =
∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(n+ r + 1)

(x
2

)2r+n
.

Similarly, the other solution is obtained by putting −n for n, that is, the other solution, when n is not
an integer is given by

J−n(x) =
∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
.

Case II: When n = ±1/2, then the Bessel’s equation becomes

x2
d2y

dx2
+ x

dy

dx
+

(
x2 − 1

4

)
y = 0.

Let

y =

∞∑
m=0

cmxm+s
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be a solution of the above equation, where c0 ̸= 0 and s is to be determined. Then the above equation
becomes

∞∑
m=0

(m+ s)(m+ s− 1)cmxm+s +
∞∑

m=0

(m+ s)cmxm+s +
∞∑

m=0

cmxm+s+2 − 1

4

∞∑
m=0

cmxm+s = 0

or,
∞∑

m=0

(
m+ s+

1

2

)(
m+ s− 1

2

)
cmxm +

∞∑
m=0

cmxm+2 = 0

or,
∞∑

m=0

{(
m+ s+

1

2

)(
m+ s− 1

2

)
cm + cm−2

}
xm +

(
s+

1

2

)(
s− 1

2

)
c0

+

(
s+

3

2

)(
s+

1

2

)
c1x = 0

Thus, the indicial equation is(
s+

1

2

)(
s− 1

2

)
c0 = 0 =⇒ s = ±1

2
, since c0 ̸= 0.

When s = 1/2, c1 = 0 and when s = −1/2, c1 is indeterminate. Take c1 as constant. Now, the general
recurrence relation is

cm = − 1

(m+ s+ 1/2)(m+ s− 1/2)
cm−2, m ≥ 2.

When s = −1/2, we have

cm = − 1

m(m− 1)
cm−2, m ≥ 2.

Thus

c2 = − 1

2!
c0, c4 =

1

4!
c0, c6 = − 1

6!
c0, . . . ,

c3 = − 1

3!
c1, c5 =

1

5!
c1, c7 = − 1

7!
c1, . . . .

Thus, the solution becomes

y = c0

[
x−1/2 − x3/2

2!
+

x7/2

4!
− · · ·

]
+ c1

[
x1/2 − x5/2

3!
+

x9/2

5!
− · · ·

]
= 0.

We have,

Jn(x) =

∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(n+ r + 1)

(x
2

)2r+n
.

Thus,

J1/2(x) =
∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(1/2 + r + 1)

(x
2

)2r+1/2
.

Simplification of the above equation yields the same result as we have got on solving the Bessel’s equation
for n = ±1/2.

The function Jn(x) is one of the solutions of the Bessel’s equation. Also, J−n(x) represents a solution of
Bessel’s equation which may or may not be independent of Jn(x) always.
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Theorem 10.1.2. If n is an integer, then

J−n(x) = (−1)nJn(x).

This shows that Jn(x) and J−n(x) do not provide with two independent solutions of Bessel’s equations
when n is an integer.

Proof. •

CaseI: When n is a positive integer, then

Jn(x) =
∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(n+ r + 1)

(x
2

)2r+n
,

and J−n(x) =
∞∑
r=0

(−1)r.
1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
.

We know that Γ(m) = ∞ if m = 0 or a negative integer. Thus, −n+ r+1 should be greater than zero,
that is, −n+ r + 1 ≥ 1 =⇒ r ̸= n. So,

J−n(x) =
∞∑
r=n

(−1)r.
1

r!Γ(r − n+ 1)

(x
2

)2r−n
.

Put m = r − n and eliminate r. Thus,

J−n(x) =

∞∑
m=0

(−1)m+n.
1

(m+ n)!Γ(m+ 1)

(x
2

)2m+n

=
∞∑

m=0

(−1)m+n.
1

Γ(m+ n+ 1)Γ(m+ 1)

(x
2

)2m+n

= (−1)n
∞∑

m=0

(−1)m.
1

Γ(m+ n+ 1)Γ(m+ 1)

(x
2

)2m+n
= (−1)nJn(x).

CaseII: When n is a negative integer. Let n = p, where p is a positive integer. Then,−

J−p(x) = (−1)pJp(x), [by CaseI]

or, Jn(x) = (−1)−nJ−n(x)

or, J−n(x) = (−1)nJn(x).

When n is an integer, J−n(x) is not independent of Jn(x). Hence y = AJn(x)+BJ−n(x) is not a general
solution of (10.1.1) when n is an integer. But when n is non-integral, then the general solution is given by
y = AJn(x)+BJ−n(x), for arbitrary constants A and B. We will investigate the general solution for Bessel’s
equation for integral n. We have the theorem below in this direction.

Theorem 10.1.3. The two linearly independent solutions of (10.1.1) may be taken to be two functions taken
as y1(x) = Jn(x) and

y2(x) = lim
ν→n

cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
= Yn(x).

88



10.1. BESSEL’S EQUATION AND BESSEL’S FUNCTIONS

Proof. •

CaseI: When n is not an integer. Since n is not an integer, so sinnπ ̸= 0. Hence

Yn(x) = cot(nπ)Jn(x)− cosec(nπ)J−n(x),

that is, Yn is a linear combination of Jn(x) and J−n(x). But we know that Jn and J−n are independent
solutions of Bessel’s equation, when n is not an integer, that is,

W (Jn(x), J−n(x)) =

∣∣∣∣Jn J−n

J
′
n J

′
−n

∣∣∣∣ ≠ 0.

Now, on simplifying, we get

W (Jn, Yn) =

∣∣∣∣Jn Yn
J

′
n Y

′
n

∣∣∣∣ = −cosec(nπ)W (Jn(x), J−n(x)) ̸= 0.

Thus, Jn and Yn are two independent solutions of Bessel’s equation of order n.

CaseII: Let n be an integer. Then sin(nπ) = 0 and cos(nπ) = (−1)n and also J−n(x) = (−1)nJn(x). First,
we deduce a simplified form of Yn(x).

Yn(x) = lim
ν→n

cos(νπ)Jν(x)− J−ν(x)

sin(νπ)

(
0

0

)
=

−π sin(nπ)Jn(x) + cos(nπ)
[

∂
∂νJν(x)

]
ν=n

−
[

∂
∂νJ−ν(x)

]
ν=n

π cos(nπ)

=
1

π

[
∂

∂ν
Jν(x)− (−1)n

∂

∂ν
J−ν(x)

]
ν=n

. (10.1.4)

We now establish the following two results for Yn(x).

1. Yn(x) is a solution of Bessel’s equation.

Proof. Jν(x) and J−ν(x) are solutions of Bessel’s equation of order ν. Thus,

x2
d2

dx2
Jν + x

d

dx
Jν + (x2 − ν2)Jν = 0 (10.1.5)

x2
d2

dx2
J−ν + x

d

dx
J−ν + (x2 − ν2)J−ν = 0 (10.1.6)

Differentiating (10.1.5) and (10.1.6), with respect to ν we get,

x2
d2

dx2

(
∂

∂ν
Jν

)
+ x

d

dx

(
∂

∂ν
Jν

)
+ (x2 − ν2)

(
∂

∂ν
Jν

)
− 2νJν = 0 (10.1.7)

x2
d2

dx2

(
∂

∂ν
J−ν

)
+ x

d

dx

(
∂

∂ν
J−ν

)
+ (x2 − ν2)

(
∂

∂ν
J−ν

)
− 2νJ−ν = 0 (10.1.8)

By (10.1.7) −(−1)ν(10.1.8), we get

x2
d2

dx2

[
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
+ x

d

dx

[
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
+
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(x2 − ν2)

[
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
− 2ν[Jν − (−1)νJ−ν ] = 0.

At ν = n, the above equation becomes[
x2

d2

dx2
+ x

d

dx
+ (x2 − n2)

] [
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
ν=n

− 2n(Jn − (−1)nJ−n) = 0

or,
[
x2

d2

dx2
+ x

d

dx
+ (x2 − n2)

] [
∂

∂ν
Jν − (−1)ν

∂

∂ν
J−ν

]
ν=n

= 0

or,
[
x2

d2

dx2
+ x

d

dx
+ (x2 − n2)

]
Yn(x) = 0.

Thus, Yn is a solution of Bessel’s equation of order n.

2. Yn(x) is independent of Jn(x).

This is evident from the structure of Yn and Jn.

Definition 10.1.4. Bessel’s function of second kind of order n, denoted by Yn(x) is defined as

Yn(x) = lim
ν→n

cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
, when n is an integer

=
Jn(x) cos(nπ)− J−n(x)

sin(nπ)
, when n is not an integer.

Thus, the general solution of Bessel’s equation is

y(x) = C1Jn(x) + C2Yn(x)

where C1 and C2 are independent constants.

10.2 Recurrence Relations of Bessel’s Equations

For integral n, the Bessel’s function satisfies the following recurrence relations:

1. xJ
′
n(x) = nJn(x)− xJn+1(x).

Proof. We have

Jn(x) =

∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
.

Differentiating with respect to x, we get

J
′
n(x) =

1

2

∞∑
r=0

(−1)r
(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r−1

or, xJ
′
n(x) =

∞∑
r=0

(−1)r
(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r
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= n
∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
+ 2

∞∑
r=0

(−1)r
r

r!Γ(r + n+ 1)

(x
2

)n+2r

= nJn(x)− 2
∞∑
s=0

(−1)s
1

s!Γ(n+ s+ 2)

(x
2

)n+2s+2
[Putting r-1=s and eliminating r]

= nJn(x)− x
1

Γ(s+ 1)Γ(n+ s+ 2)

(x
2

)n+1+2s
= nJn(x)− xJn+1(x).

2. xJ
′
n(x) = xJn−1(x)− nJn(x).

Proof. We have

Jn(x) =

∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
.

Differentiating with respect to x, we get

J
′
n(x) =

1

2

∞∑
r=0

(−1)r
(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r−1

or, 2J
′
n(x) =

∞∑
r=0

(−1)r
2(n+ 2r)

r!Γ(r + n+ 1)

(x
2

)n+2r−1
−

∞∑
r=0

(−1)r
n

r!Γ(r + n+ 1)

(x
2

)n+2r−1

= 2

∞∑
r=0

(−1)r
1

r!Γ(r + n)

(x
2

)n−1+2r
− n

∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r−1

= 2Jn−1(x)−
2n

x

∞∑
r=0

(−1)r
1

r!Γ(r + n+ 1)

(x
2

)n+2r
= 2Jn−1(x)−

2n

x
Jn(x).

Simplifying, we get the desired result.

3. 2n
x Jn(x) = Jn−1(x) + Jn+1(x).

Proof. From 1, we have
xJ

′
n(x) = nJn(x)− xJn+1(x).

From 2, we have
xJ

′
n(x) = xJn−1(x)− nJn(x).

Subtracting and simplifying, we get the desired result.

4. 2J
′
n(x) = Jn−1(x)− Jn+1(x).

Proof. From 1, we have
xJ

′
n(x) = nJn(x)− xJn+1(x).

From 2, we have
xJ

′
n(x) = xJn−1(x)− nJn(x).

Adding and simplifying, we get the desired result.
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10.3 Generating Function for Bessel’s Functions

For all values of x and for all values of z such that 0 < |z| < ∞, the function

w(x, z) = e
x
2{z− 1

z},

generates the Bessel’s function of integral order n, that is,

e
x
2{z− 1

z} =
∞∑

n=−∞
Jn(x)z

n.

Proof. We have,

e
x
2{z− 1

z} = exz/2.e−x/(2z)

=

{ ∞∑
r=0

(xz
2

)r 1

r!

}{ ∞∑
s=0

(−1)s
( x

2z

)s 1

s!

}

=
∞∑
r=0

∞∑
s=0

(−1)s
1

Γ(r + 1)Γ(s+ 1)

(x
2

)r+s
zr−s. (10.3.1)

CaseI: When r − s ≥ 0, let r − s = n. Then n ≥ 0, that is, n is an integer varying from 0 to ∞. Eliminating
s, we get

∞∑
n=0

∞∑
r=n

(−1)r−n 1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
zn.

[For real values of Γ(r + 1) we must have r + 1 ≥ 1, that is, r ≥ 0 and for real values of Γ(r − n+ 1)
we must similarly have r ≥ n.] Now, let

w(x, z) =

∞∑
n=0

fn(x)z
n, where fn(x) =

∞∑
r=n

(−1)r−n 1

Γ(r + 1)Γ(r − n+ 1)

(x
2

)2r−n
.

Putting r − n = p and eliminating r, we get

fn(x) =

∞∑
p=0

(−1)p
1

Γ(p+ 1)Γ(p+ n+ 1)

(x
2

)2p+n
= Jn(x). (10.3.2)

CaseII: When r − s < 0, let r − s = −n1, where n1 is a positive integer. So n1 takes values from 1 to ∞.
Eliminating s, we get,

w(x, z) =

∞∑
n1=1

∞∑
r=0

(−1)r+n1
1

Γ(r + 1)Γ(r + n1 + 1)

(x
2

)2r+n1

z−n1 .

[For real values of Γ(r+1) we must have r+1 ≥ 1, that is, r ≥ 0 and for real values of Γ(r+n1 +1)
we must similarly have r ≥ −n1. Both inequalities simultaneously give r ≥ 0.] We assume

w(x, z) =
∞∑

n1=1

fn1(x)z
−n1 ,
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where

fn1(x) =

∞∑
r=0

(−1)r+n1
1

Γ(r + 1)Γ(r + n1 + 1)

(x
2

)2r+n1

= (−1)n1Jn1(x).

Thus,

w(x, z) =

∞∑
n1=1

(−1)n1Jn1(x)z
−n1

=

−1∑
n=−∞

(−1)−nJ−n(x)z
n

=
−1∑

n=−∞
(−1)−n(−1)nJn(x)z

n =
∑

n=−∞
Jn(x)z

n. (10.3.3)

Combining (10.3.2) and (10.3.3), we get the desired result.

10.4 Orthogonality Properties of Bessel’s Polynomials

If ci and cj are the roots of the equation Jn(ca) = 0, then∫ a

0
xJn(cix)Jn(cjx)dx = 0, i ̸= j

=
a2

a
J2
n+1(cia), i = j.

To prove the above, we first write the Bessel’s equation of order n.

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0.

The general solution is
y(x) = AJn(x) +BYn(x).

We first show that Jn(cx) satisfies the following equation, known as the modified Bessel’s equation,

x2
d2y

dx2
+ x

dy

dx
+ (c2x2 − n2)y = 0.

Put z = cx. Then we get

dy

dx
=

dy

dz

dz

dx
= c

dy

dz
,

d2y

dx2
=

d

dx

(
dy

dz
.c

)
=

d

dz

(
dy

dz
.c

)
dz

dx
= c2

d2y

dz2
.

Using these in the modified Bessel’s equation, we get

z2
d2y

dz2
+ z

dy

dz
+ (z2 − n2)y = 0.

This is Bessel’s equation in the variable z whose general solution is

y(z) = AJn(z) +BYn(z).

Thus Jn(z), that is, Jn(cx) is the solution of the modified Bessel’s equation. We now move on to prove the
orthogonality condition.
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Proof. •

CaseI: When i ̸= j. ci and cj are the roots of Jn(ca) = 0, that is,

Jn(cia) = 0, Jn(cja) = 0.

We know that Jn(cx) satisfies the modified Bessel’s equation. Thus,

x2
d2

dx2
Jn(cx) + x

d

dx
Jn(cx) + (c2x2 − n2)Jn(cx) = 0.

Thus,

x2
d2

dx2
Jn(cix) + x

d

dx
Jn(cix) + (c2ix

2 − n2)Jn(cix) = 0 (10.4.1)

x2
d2

dx2
Jn(cjx) + x

d

dx
Jn(cjx) + (c2jx

2 − n2)Jn(cjx) = 0 (10.4.2)

Putting u = Jn(cix) and v = Jn(cjx), we get from (10.4.1) and (10.4.2),

x2
d2u

dx2
+ x

du

dx
+ (c2ix

2 − n2)u = 0 (10.4.3)

x2
d2v

dx2
+ x

dv

dx
+ (c2jx

2 − n2)v = 0 (10.4.4)

Now, (10.4.3)×v−(10.4.4)×u gives on simplification

d

dx

{
x

(
du

dx
v − dv

dx
u

)}
+ (c2i − c2j )xuv = 0.

Integrating the above equation with respect to x from 0 to a, we get

(c2j − c2i )

∫ a

0
xuvdx =

[
x

(
du

dx
v − dv

dx
u

)]a
0

=

[
x

(
v
d

dx
u− u

d

dx
v

)]a
0

= aJn(cja)

[
d

dx
Jn(cix)

]
x=a

− aJn(cia)

[
d

dx
Jn(cjx)

]
x=a

= 0

[since ci and cj are the roots of the equation Jn(ca) = 0]. Hence the result.

CaseII: When i = j. Multiplying (10.4.3) by 2du
dx , we get on simplifying,

d

dx

[(
x2
(
du

dx

)2
)

− n2u2 + c2ix
2u2

]
− 2c2ixu

2 = 0.

Integrating the above equation with respect to x from 0 to a, we get

2c2i

∫ a

0
xu2dx =

[(
x2
(
du

dx

)2
)

− n2u2 + c2ix
2u2

]a
0

=

[(
x2
(

d

dx
Jn(cix)

)2
)

− n2[Jn(cix)]
2 + c2ix

2[Jn(cix)]
2

]a
0

= a2
[
d

dx
Jn(cix)

]
x=a

− n2[Jn(cia)]
2 + c2i a

2[Jn(cia)]
2 + n2(Jn(0))

2

= a2
[
d

dx
Jn(cix)

]
x=a

+ n2(Jn(0))
2 = a2

[
d

dx
Jn(cix)

]
x=a

. (10.4.5)
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Recurrence relation 1 gives
xJ

′
n(x) = nJn(x)− xJn+1(x).

Now, put x = ciy. Then dx = cidy. Thus,

ciy
1

ci

d

dy
Jn(ciy) = nJn(ciy)− ciyJn+1(ciy)

or,
d

dy
Jn(ciy) =

n

y
Jn(ciy)− ciJn+1(ciy)

or,
d

dx
Jn(cix) =

n

x
Jn(cix)− ciJn+1(cix).

Putting x = a on both sides of the last equation, we get[
d

dx
Jn(cix)

]
x=a

=
n

a
Jn(cia)− ciJn+1(cia) = −ciJn+1(cia).

Thus, (10.4.5) gives

2c2i

∫ a

0
x[Jn(cix)]

2dx = a2c2i [Jn+1(cia)]
2.

Simplifying, we get the desired result.

10.5 Integrals of Bessel’s Functions

1. We have for any values of n,

Jn(x) =
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(x
2

)n+2r
.

Then,

d

dx
(xnJn(x)) =

d

dx

( ∞∑
r=0

(−1)r
x2n+2r

2n+2rΓ(r + 1)Γ(r + n+ 1)

)

=

∞∑
r=0

(−1)r
(2n+ 2r)x2n+2r−1

2n+2rΓ(r + 1)Γ(r + n+ 1)

= xn
∞∑
r=0

(−1)r
x(n−1)+2r

2(n−1)+2rΓ(r + 1)Γ(r + (n− 1) + 1)

= xnJn−1(x) (10.5.1)

Thus, ∫
xnJn−1(x)dx = xnJn(x) + c (10.5.2)

In particular, for n = 1, we get ∫
xJ0(x)dx = xJ1(x) + c (10.5.3)
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2. We have for any values of n,

d

dx

(
x−nJn(x)

)
= −x−nJn+1(x) (verify!)

Thus ∫
x−nJn+1(x)dx = −x−nJn(x) + c (10.5.4)

In particular, for n = 0, we get ∫
J1(x)dx = −J0(x) + c (10.5.5)

3. Rewriting the recurrence relation 4, we get

Jn+1(x) = Jn−1(x)− 2J
′
n(x)

Integrating w.r.t. x we get ∫
Jn+1(x)dx =

∫
Jn−1(x)dx− 2Jn(x). (10.5.6)

Example 10.5.1. Find J0(x) and J1(x).
We have,

Jn(x) =
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(x
2

)n+2r
.

Putting n = 0, we get

J0(x) =

∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + 1)

(x
2

)2r
=

∞∑
r=0

(−1)r
1

(r!)2

(x
2

)2r
= 1− 1

(1!)2

(x
2

)2
+

1

(2!)2

(x
2

)4
− 1

(3!)2

(x
2

)6
+ · · ·

= 1− 1

4
x2 +

1

64
x4 − 1

2304
x6 + · · · .

Again putting n = 1, we get

J1(x) =

∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + 2)

(x
2

)1+2r
=

∞∑
r=0

(−1)r
1

r!(r + 1)!

(x
2

)1+2r

=
x

2

[
1− 1

1!2!

(x
2

)2
+

1

2!3!

(x
2

)4
− 1

3!4!

(x
2

)6
+ · · ·

]
=

x

2
− 1

16
x3 +

1

384
x5 − 1

18432
x7 + · · · .

Example 10.5.2. Show that Jn(x) is an even function when n is even and odd function when n is odd.
Suppose n is even. Then

Jn(−x) =
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(
−x

2

)n+2r

= (−1)n
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(x
2

)n+2r

= (−1)nJn(x) = Jn(x), since n is even.
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Next suppose n is odd. Then

Jn(−x) =
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(
−x

2

)n+2r

= (−1)n
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(x
2

)n+2r

= (−1)nJn(x) = −Jn(x), since n is odd.

Example 10.5.3. Express J6(x) in terms of J0(x) and J0(x).

Rewriting the recurrence relation 3 we get

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x).

Putting n = 1, 2, 3, 4, 5 we get

J2(x) =
2

x
J1(x)− J0(x)

J3(x) =
4

x
J2(x)− J1(x) =

(
8

x2
− 1

)
J1(x)−

4

x
J0(x)

J4(x) =
6

x
J3(x)− J2(x) =

(
48

x3
− 8

x

)
J1(x) +

(
1− 24

x2

)
J0(x)

J5(x) =
8

x
J4(x)− J3(x) =

(
384

x4
− 72

x2
− 1

)
J1(x) +

(
12

x
− 192

x3

)
J0(x)

J6(x) =
10

x
J5(x)− J4(x) =

(
3840

x5
− 768

x3
− 2

x

)
J1(x) +

(
−1 +

144

x2
− 1920

x4

)
J0(x).

Example 10.5.4. Show that

J−1/2(x) =

√
2

πx
cosx and J1/2(x) =

√
2

πx
sinx.

We have,

Jn(x) =
∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + n+ 1)

(x
2

)n+2r
.

Thus,

J−1/2(x) =

∞∑
r=0

(−1)r
1

Γ(r + 1)Γ(r + 1/2)

(x
2

)−1/2+2r

=

√
2

πx

[
1− x2

2!
+

x4

4!
− · · ·

]
=

√
2

πx
cosx.

We can similarly prove the other part by expanding the Bessel’s function J1/2(x).

Example 10.5.5. Show that ∫ π/2

0

√
πxJ1/2(2x)dx = 1.
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We have,

J1/2(x) =

√
2

πx
sinx.

Thus,

J1/2(2x) =

√
1

πx
sin 2x.

Integrating the above with respect to x from 0 to π/2, we get the required result.

Example 10.5.6. Express J 7
2
(x) in terms of sine and cosine functions.

Rewriting the recurrence relation 3 we get

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x).

Putting n = 1
2 ,

3
2 ,

5
2 , we get

J 3
2
(x) =

1

x
J 1

2
(x)− J− 1

2
(x) =

√
2

πx

(
sinx

x
− cosx

)

J 5
2
(x) =

3

x
J 3

2
(x)− J 1

2
(x) =

3

x

[√
2

πx

(
sinx

x
− cosx

)]
−
√

2

πx
sinx

=

√
2

πx

[(
3− x2

x2

)
sinx− 3

x
cosx

]

J 7
2
(x) =

5

x
J 5

2
(x)− J 3

2
(x)

=
5

x

√
2

πx

[(
3− x2

x2

)
sinx− 3

x
cosx

]
−
√

2

πx

(
sinx

x
− cosx

)
=

√
2

πx

[(
15− 6x2

x3

)
sinx−

(
15− x2

x2

)
cosx

]
.

Example 10.5.7. Show that J ′′
1 (x) = −J1(x) +

1
xJ2(x).

Rewriting the recurrence relation 2 we get

J ′
n(x) = Jn−1(x)−

n

x
Jn(x) (10.5.7)

Putting n = 1, in (10.5.7) we get

J ′
1(x) = J0(x)−

1

x
J1(x) (10.5.8)

Differentiating (10.5.8) w.r.t. x, we get

J ′′
1 (x) = J ′

0(x) +
1

x2
J1(x)−

1

x
J ′
1(x). (10.5.9)

Putting n = 0, in (10.5.7) we get
J ′
0(x) = J−1(x) = −J1(x) (10.5.10)

since, J−n(x) = (−1)nJn(x), when n is an integer.
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From (10.5.8), (10.5.9) and (10.5.10) we get

J ′′
1 (x) = −J1(x) +

1

x2
J1(x)−

1

x

[
J0(x)−

1

x
J1(x)

]
(10.5.11)

Rewriting the recurrence relation 3 we get

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x).

Putting n = 1, we get

J2(x) =
2

x
J1(x)− J0(x) (10.5.12)

Eliminating J0(x) from (10.5.11) and (10.5.12) we get

J ′′
1 (x) = −J1(x) +

1

x2
J1(x)−

1

x

[
2

x
J1(x)− J2(x)−

1

x
J1(x)

]
= −J1(x) +

1

x
J2(x).

Example 10.5.8. Show that, xnJn(x) is a solution of

x
d2y

dx2
+ (1− 2n)

dy

dx
+ xy = 0. (10.5.13)

Let y = xnJn(x).
From (10.5.1), we have

d

dx
[xnJn(x)dx] = xnJn−1(x)

or
dy

dx
= xnJn−1(x)

Differentiaing w.r.t x, we get

d2y

dx2
= xnJ ′

n−1(x) + nxn−1Jn−1(x).

Putting the value of y, dy
dx and d2y

dx2 in the LHS of (10.5.13) we get

x
d2y

dx2
+ (1− 2n)

dy

dx
+ xy = x

[
xnJ ′

n−1(x) + nxn−1Jn−1(x)
]
+ (1− 2n)xnJn−1(x) + xn+1Jn(x)

= xn+1J ′
n−1(x)− (n− 1)xnJn−1(x) + xn+1Jn(x)

= xn+1

[
J ′
n−1(x)−

(n− 1)

x
Jn−1(x) + Jn(x)

]
= 0 by recurrence relation 1.

Example 10.5.9. Evaluate
∫
J5(x)dx.

From (10.5.6), we have ∫
Jn+1(x)dx =

∫
Jn−1(x)dx− 2Jn(x).

Putting n = 4, we get ∫
J5(x)dx =

∫
J3(x)dx− 2J4(x).
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Again putting n = 2, we get ∫
J3(x)dx =

∫
J1(x)dx− 2J2(x).

Also from (10.5.5), we know that ∫
J1(x)dx = −J0(x) + c

From the above relations we get∫
J5(x)dx =

∫
J1(x)dx− 2J2(x)− 2J4(x)

= −J0(x)− 2J2(x)− 2J4(x) + c

Example 10.5.10. Evaluate
∫
x3J3(x)dx.

From (10.5.4), we get,
∫ {

x−2J3(x)
}
dx = −x−2J2(x).

Integrating the given integral by parts w.r.t. x we get,∫
x3J3(x)dx =

∫
x5
[
x−2J3(x)

]
dx

= −x5x−2J2(x) +

∫
5x4x−2J2(x)dx

= −x3J2(x) + 5

∫
x2J2(x)dx

Again (10.5.4), we get,
∫ {

x−1J2(x)
}
dx = −x−1J1(x).

Integrating
∫
x2J2(x)dx by parts w.r.t. x we get,∫

x2J2(x)dx =

∫
x3
[
x−1J2(x)

]
dx

= −x3x−1J1(x) +

∫
3x2x−1J1(x)dx

= −x2J1(x) + 3

∫
xJ1(x)dx

Again, ∫
xJ1(x)dx = −

∫
xJ ′

0(x)dx

= −
[
xJ0(x)−

∫
J0(x)dx

]
Substituting all the above values, we get∫

x3J3(x)dx = −x3J2(x) + 5

∫
x2J2(x)dx

= −x3J2(x) + 5

[
−x2J1(x) + 3

{
−xJ0(x) +

∫
J0(x)dx

}]
= −x3J2(x)− 5x2J1(x)− 15xJ0(x) + 15

∫
J0(x)dx
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Example 10.5.11. Prove that Jn+1(x) = x
∫ 1
0 Jn(xy)y

n+1dy.
Let xy = t. Then xdy = dt and

x

∫ 1

0
Jn(xy)y

n+1dy = x

∫ x

0
Jn(t)

(
t

x

)n+1 dt

x

= x−n−1

∫ x

0
tn+1Jn(t)dt

= x−n−1

∫ x

0
xn+1Jn(x)dx

= x−n−1xn+1Jn+1(x) from (10.5.2)

= Jn+1(x)

Exercise 10.5.12. 1. Prove that 2J ′′
0 = J2 − J0.

2. Prove that for integral n, 4J”
n = Jn−2 − 2Jn + Jn+2.

3. Show that, d
dx{xJnJn+1} = x[J2

n − J2
n+1]

4. Prove that, d
dx{J

2
n + J2

n+1} = 2[nxJ
2
n − n+1

x J2
n+1].

5. Prove that, J2
0 + 2(J2

1 + J2
2 + J2

3 + · · · ) = 1

6. Prove that

J−3/2(x) =

√
2

πx

(
−cosx

x
− sinx

)
and J3/2(x) =

√
2

πx

(
sinx

x
− cosx

)
.

7. Express J3 and J4 in terms of J0 and J1.

8. Prove that J
′
0 = −J1.

9. For n > 1 show that ∫ x

0
xn+1Jn(x)dx = xn+1Jn+1(x)dx.

10. Prove that

(a)
d

dx
(xJ1(x)) = xJ0(x).

(b) ∫ b

0
xJ0(ax)dx =

b

a
J1(ab).

11. Express
∫
x−3J4(x)dx in terms of J0 and J1.

12. Show that, x−nJn(x) is a solution of

x
d2y

dx2
+ (1 + 2n)

dy

dx
+ xy = 0.

13. Prove that
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(a) ∫ x

0
x−nJn+1(x)dx =

1

2nΓ(n+ 1)
− x−nJn(x), n > 1.

(b) ∫ ∞

0
x−nJn+1(x)dx =

1

2nΓ(r + 1)
, n > −1

2
.

14. Prove that ∫
J0(x) sinxdx = xJ0(x) sinx− xJ1(x) cosx+ c

Few Probable Questions

1. Deduce a generating function for Bessel’s functions.

2. Deduce the orthogonality of Bessel’s functions.

3. Define Bessel’s function of second kind. Show that the Bessel’s function of second kind is a solution of
Bessel’s equations.

4. Prove that xJ
′
n(x) = nJn(x)− xJn+1(x). Hence show that

d

dx
J0(x) = −J1(x) (10.5.14)

and ∫ b

a
J0(x)J1(x)dx =

1

2
[(J0(a))

2 − (J0(b))
2]. (10.5.15)

5. If a > 0, prove that ∫ ∞

0
e−axJ0(bx)dx =

1√
a2 + b2

.
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Unit 11

Course Structure

• Hermite Polynomial: Generating function, Recurrence relations, Rodrigue’s formula, Orthogonal prop-
erty. Construction and solution of Hermite differential equation.

11.1 Introduction

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. These arise in
probability, combinatorics, numerical analysis, systems theory, random matrix theory and many more. Her-
mite polynomials were defined by Pierre-Simon Laplace in 1810, though in scarcely recognizable form, and
studied in detail by Pafnuty Chebyshev in 1859. Chebyshev’s work was overlooked, and they were named
later after Charles Hermite, who wrote on the polynomials in 1864, describing them as new. They were conse-
quently not new, although Hermite was the first to define the multidimensional polynomials in his later 1865
publications. And the Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of
the Schrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator
systems in quantum mechanics in phase space. They further enter in the quantum mechanics of the Morse
potential and of the 3D isotropic harmonic oscillator. The generalized Laguerre polynomials are related to the
Hermite polynomials. This unit is dedicated to the study of Hermite as well as Laguerre polynomials.

Objectives

After reading this unit, you will be able to

• solve the Hermite’s equation and find the general structure of Hermite’s polynomial

• define a general Laguerre polynomial

• derive the Rodrigue’s formula for both Hermite and Laguerre polynomials

• establish the orthogonality of Hermite and Laguerre polynomials

• find a generating function for Laguerre and Hermite’s polynomials

• learn some recurrence relations relating to both

• solve certain problems relating to both
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11.2 Hermite’s Equation and Hermite’s Polynomials

The Hermite’s equation is
d2y

dx2
− 2x

dy

dx
+ 2ny = 0 (11.2.1)

where, n is a constant.
The most important single application of the Hermite polynomials is to the theory of the linear harmonic

oscillator in quantum mechanics. A differential equation that arises in this theory and is closely related to
Hermite’s equation (11.2.1) is

d2w

dx2
+
(
2n+ 1− x2

)
w = 0, (11.2.2)

where n is a constant. Physicist are interested in sollutions of (11.2.2) that approaches zero as |x| → ∞. To
solve (11.2.2) directly by power series method is very tedious job. We use the transformation

w = ye−
x2

2

and simplify equation (11.2.2) into (11.2.1). Then the desired solution of (11.2.2) will correspond to the

solution of (11.2.1) that grow in magnitude less rapidly than e
x2

2 as |x| → ∞.
We solve (11.2.1) by Frobenius Method, about x = 0. Assume that

y =
∞∑

m=0

amxs+m

be the solution of (11.2.1), where a0 ̸= 0 and s is to be determined. Then

dy

dx
=

∞∑
m=0

(s+m)amxs+m−1

d2

dx2
=

∞∑
m=0

(s+m)(s+m− 1)amxs+m−2

Thus, equation (11.2.1) becomes

∞∑
m=0

(s+m)(s+m− 1)amxs+m−2 − 2
∞∑

m=0

(s+m)amxs+m + 2n
∞∑

m=0

amxs+m = 0

or,
∞∑

m=0

(s+m)(s+m− 1)amxs+m−2 − 2

∞∑
m=0

(s+m− n)amxs+m = 0

or,
∞∑

m=0

(s+m)(s+m− 1)amxm − 2
∞∑

m=0

(s+m− n)amxm+2 = 0

or,
∞∑

m=0

(s+m)(s+m− 1)amxm − 2
∞∑

m=2

(s+m− n− 2)am−2x
m = 0

or,
∞∑

m=2

{(s+m)(s+m− 1)am − 2(s+m− n− 2)am−2}xm + s(s− 1)a0 + s(s+ 1)a1x = 0

The indicial equation is
s(s− 1)a0 = 0 =⇒ s = 0, 1.
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When s = 0, a1 is indeterminate. When s = 1, a1 = 0. The general recurrance relation is

am =
2(s+m− n− 2)

(s+m)(s+m− 1)
am−2, m ≥ 2

For s = 0, we have

am = 2
m− n− 2

m(m− 1)
am−2, m ≥ 2.

Putting m = 2, 4, . . . , 2m, . . ., we get

a2 =
(−1)121.na0

2!

a4 =
(−1)2.22n(n− 2)a0

4!

a6 =
(−1)3.23n(n− 2)(n− 4)a0

6!
...

a2m =
(−1)m.2mn(n− 2)(n− 4) . . . (n− 2m+ 2)

(2m)!
a0

Next, put m = 3, 5, . . . , 2m+ 1, . . ., we get

a3 =
(−1).2.(n− 1)

3!
a1

a5 =
(−1)2.22(n− 1)(n− 3)

5!
a1

...

a2m+1 =
(−1)m.2m(n− 1)(n− 3) . . . (n− 2m+ 1)

(2m+ 1)!
a1

Hence, the series solution gives

y = a0

[
1 +

(−1)121.n

2!
x2 + · · ·+ (−1)m.2mn(n− 2)(n− 4) . . . (n− 2m+ 2)

(2m)!
x2m + · · ·

]
+

a1

[
x+

(−1).2.(n− 1)

3!
x3 + · · ·+ (−1)m.2m(n− 1)(n− 3) . . . (n− 2m+ 1)

(2m+ 1)!
x2m+1 + · · ·

]
which is of the form a0y1(x)+ a1y2(x). It is observed that in the case when the constant represents a positive
integer, then one of the solutions y1 or y2 reduces to a polynomial according as n is even or odd.

When n = 2, y1 = 1− 2x2.
When n = 4, y1 = 1− 4x2 + 4/3x4. and so on.
If n = 1, y2 = x.
If n = 3, y2 = x− 2/3x3 and so on.

Thus, when n is a positive integer, one solution of Hermite’s equation will be a polynomial and the other
solution will be an infinite power series. We try to find the form of the polynomial solution which is as follows.

y = anx
n + an−2x

n−2 + · · ·+ a1x, when n is odd

= anx
n + an−2x

n−2 + · · ·+ a0, when n is even
(11.2.3)
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Here, we are going to have series solution of Hermite’s equation in decreasing powers of x. While solving
Hermite’s equation by Frobenius method, we got the recurrence relation when s = 0, as

am = 2
m− n− 2

m(m− 1)
am−2, m ≥ 2.

Here, we would express all the coefficients in terms of an instead of a1 or a0. We have from the previous
equation,

am−2 =
m(m− 1)

2(m− n− 2)
am.

Replacing m by m+ 2, we get

am =
(m+ 1)(m+ 2)

2(m− n)
am+2. (11.2.4)

Put m = n− 2. Then we get

an−2 = (−1)
n(n− 1)

2.2
an.

and putting m = n− 4, we get

an−4 = (−1)2
n(n− 1)(n− 2)(n− 3)

2.2.2.4
an.

Putting these in (11.2.3), we get,

y = an

[
xn − n(n− 1)

2.2
xn−2 + · · ·+ (−1)r

n(n− 1) . . . (n− 2r + 1)

2r.2.4 . . . 2r
xn−2r + · · ·

]
When n is even, n−2r ≥ 0 which gives r ≤ n/2. And when n is odd, n−2r ≥ 1 which gives r ≤ (n−1)/2.
Thus, r vanishes from 0 to n/2 or (n − 1)/2 according as n is even or odd, which implies that r varies from
0 to [n/2]. Hence, the general form of the polynomial solution to (11.2.1) is

y = an

[n2 ]∑
r=0

(−1)r
n(n− 1) . . . (n− 2r + 1)

22r.r!
xn−2r.

Taking an = 2n, and denoting the solution by Hn(x), we obtain a standard solution to (11.2.1) known as the
Hermite’s polynomial of order n.

Definition 11.2.1. Hermite’s polynomial Hn(x) of order n is defined by

Hn(x) =

[n2 ]∑
r=0

(−1)r
n!

r!(n− 2r)!
(2x)n−2r.

The first few Hermite polynomials are

1. H0(x) = 1

2. H1(x) = 2x

3. H2(x) = 4x2 − 2

4. H3(x) = 8x3 − 12x

5. H4(x) = 16x4 − 48x2 + 12

6. H5(x) = 32x5 − 160x3 + 120x

7. H6(x) = 64x6 − 480x4 + 720x2 − 120

8. H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x.
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11.3 Generating Function for Hermite’s Polynomials

The Hermite’s polynomials Hn(x) may also be defined by the power series expansion:

e2tx−t2 =
∞∑
n=0

tn

n!
Hn(x). (11.3.1)

Each term in the expansion of e2tx−t2 gives a Hermite’s polynomial. In fact, coefficient of tn/n! gives a
Hermite’s polynomial of order n. Thus e2tx−t2 is called the generating function for Hermite’s polynomial.
This definition has the advantage of efficiency for deducing properties of Hn(x)’s.

We have,

e2tx−t2 = e2tx.e−t2

=
∞∑
s=0

(2tx)s

s!

∞∑
r=0

(−t2)r

r!

=
∞∑
s=0

∞∑
r=0

(−1)r
ts+2r

r!s!
(2x)s.

Putting s+ 2r = n and eliminating s we get

e2tx−t2 =
∞∑
n=0

[n2 ]∑
r=0

(−1)r
tn

r!(n− 2r)!
(2x)n−2r

since both r and s varies from 0 to ∞, so n varies from 0 to ∞ and n− 2r ≥ 0 which gives r ≤ n/2 and we
arrive at the same conclusion as we had arrived in case of Legendre’s polynomial. Thus, we have

e2tx−t2 =
∞∑
n=0


[n2 ]∑
r=0

(−1)r
n!

r!(n− 2r)!
(2x)n−2r

 tn

n!
=

∞∑
n=0

tn

n!
Hn(x).

Show that
Hn(−x) = (−1)nHn(x).

Solution. From (11.2.1) we get

e2tx−t2 =

∞∑
n=0

tn

n!
Hn(x).

Change x to −x and t to −t in (11.3.1), then we get

e2(−t)(−x)−(−t)2 =

∞∑
n=0

(−t)n

n!
Hn(−x).

Since
e2(−t)(−x)−(−t)2 = e2tx−t2 ,

we get
∞∑
n=0

(−t)n

n!
Hn(−x) =

∞∑
n=0

tn

n!
Hn(x)

i.e.,
∞∑
n=0

(−1)n
tn

n!
Hn(−x) =

∞∑
n=0

tn

n!
Hn(x).

Equating the coefficient of tn from both sides we get the result. ■
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11.4 Rodrigue’s Formula for Hermite’s Polynomials

Hermite’s polynomials satisfy the following formula which is known as the Rodrigue’s formula for Her-
mite’s polynomials

Hn(x) = (−1)ne−x2 dn

dxn
(e−x2

).

The function e2tx−t2 is analytic in any neighbourhood of the point t = 0. Thus, for any fixed value of x it has
a Taylor series expansion of the form

e2tx−t2 =
∞∑
n=0

tn

n!

[
∂n

∂tn

(
e2tx−t2

)]
t=0

. (11.4.1)

Now, we have
∂n

∂tn

(
e2tx−t2

)
= ex

2 ∂n

∂tn

(
e−(x−t)2

)
.

On calculation, we get

∂

∂t

(
e−(x−t)2

)
= −2(x− t)e−(x−t)2 = − ∂

∂x

(
e−(x−t)2

)
.

By repeated use of this, we get

∂n

∂tn

(
e−(x−t)2

)
= (−1)n

∂n

∂xn

(
e−(x−t)2

)
Thus, we get [

∂n

∂tn

(
e2tx−t2

)]
t=0

= ex
2
(−1)n

dn

dxn

(
e−x2

)
.

Using this result in (11.4.1), we get

e2tx−t2 = ex
2

∞∑
n=0

(−1)n
dn

dxn

(
e−x2

) tn

n!
.

From the formula of generating function of Hermite’s polynomial and equating the coefficients of tn/n! on
both sides, we get the required result.

11.5 Recurrence Relations of Hermite’s Polynomials

The Hermite’s polynomials Hn(x) satisfy some recurrence relations.

1. H
′
n(x) = 2nHn−1(x), for n ≥ 1 and H

′
0(0) = 0.

Proof. We have

e2tx−t2 =
∞∑
n=0

Hn(x)
tn

n!
.
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Differentiating both sides with respect to x, we have

∞∑
n=0

H
′
n(x)

tn

n!
= 2t.e2tx−t2 = 2t

∞∑
n=0

Hn(x)
tn

n!

=
∞∑
n=0

2Hn(x)
tn+1

n!

=

∞∑
n=1

2nHn−1(x)
tn

n!

Equating the power of t0 on both sides, we get H
′
0(0) = 0 and equating the coefficients of tn/n! on

both sides for n ≥ 1, we get the desired result.

2. Hn+1(x) = 2xHn(x)− 2nHn−1(x), for n ≥ 1 and H1(x) = 2xH0(x).

Proof. We have
∞∑
n=0

Hn(x)
tn

n!
= e2tx−t2 .

Differentiating both sides with respect to t, we get

2(x− t).e2tx−t2 =
∞∑
n=0

nHn(x)
tn−1

n!

or, 2(x− t)

∞∑
n=0

Hn(x)
tn

n!
=

∞∑
n=1

Hn(x)
tn−1

(n− 1)!
=

∞∑
n=0

Hn+1(x)
tn

n!

or, 2x
∞∑
n=0

Hn(x)
tn

n!
= 2

∞∑
n=0

Hn(x)
tn+1

n!
+

∞∑
n=0

Hn+1(x)
tn

n!

Equating the coefficients of t0 and tn/n! on both sides, we get the desired results.

3. H
′
n(x) = 2xHn(x)−Hn+1(x).

Proof. Left as an exercise.

4. H
′′
n(x)− 2xH

′
n(x) + 2nHn(x) = 0.

Proof. Left as an exercise.

11.6 Orthogonality Properties of Hermite’s Polynomials

The Hermite’s polynomials are orthogonal in the interval (−∞,∞) i.e.,∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx = 0, m ̸= n

=
√
π2n.n!, m = n
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We have

e2tx−t2 =
∞∑
n=0

Hn(x)
tn

n!
.

Replacing n by m and t by s and multiplying the resulting equation with the above equation we get,

∞∑
m=0

∞∑
n=0

Hn(x)Hm(x)

n!.m!
tnsm = e2tx−t2=2sx−s2 .

Multiplying both sides by e−x2
and integrating with respect to x from −∞ to ∞, we get∫ ∞

−∞

( ∞∑
n=0

∞∑
m=0

e−x2
Hn(x)Hm(x)

n!.m!

)
dx.tnsm =

∫ ∞

−∞
e−x2+2x(t+s)−(t2+s2)

or,
∞∑
n=0

∞∑
m=0

(∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx

)
tn.sm

n!.m!
= e2ts

∫ ∞

−∞
e−(x−(t+s))2dx (11.6.1)

Putting x− (t+ s) = y, we get, dx = dy. Thus,

e2ts
∫ ∞

−∞
e−y2 = e2ts

√
π, using gamma integral

=

∞∑
n=0

2n.tn.sn

n!

√
π.

Thus, (11.6.1) becomes

∞∑
n=0

∞∑
m=0

(∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx

)
tn.sm

n!.m!
=

√
π

∞∑
n=0

2n.tn.sn

n!
(11.6.2)

We note that the powers of t and s are always equal in each term of the RHS of (11.6.2). So when m ̸= n,
equating the coefficients of tnsm on both sides of (11.6.2), we have∫ ∞

−∞

e−x2
Hn(x)Hm(x)

n!m!
dx = 0,

and when m = n, we have ∫ ∞

−∞

e−x2
Hn(x)Hn(x)

n!
dx = 2n.n!

√
π.

Hence, we are done.

Exercise 11.6.1. 1. Convert the Hermite polynomial 2H4(x)+3H3(x)−H2(x)+5H1(x)+6H0(x) into
an ordinary polynomial.

2. Convert the ordinary polynomial 64x4 + 8x3 − 32x2 + 40x+ 10 into a Hermite polynomial.

3. Verify the fact that e2tx−t2 is indeed the generating function for Hn(x) by expanding the exponen-
tial function and showing that the coefficients of the individual terms tn/n! are indeed the Hermite’s
polynomials.

4. Verify Rodrigue’s formula for first three Hermite’s polynomials.
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5. Find Hermite’s polynomials upto order 6 by using Rodrigue’s formula.

6. Prove that H2n(0) = (−1)n (2n)!
n! and H2n+1(0) = 0.

7. Prove that ∫ ∞

−∞
x2e−x2

Hn(x)Hn(x)dx =
√
π2n.n!

(
n+

1

2

)
.

Few Probable Questions

1. Solve the Hermite’s differential equation and deduce the structure of the Hermite’s polynomial.

2. Establish the Rodrigue’s polynomial for Hermite’s polynomial.

3. Show that e2xt−t2 is the generating function for Hermite’s polynomial.

4. Establish the orthogonality of Hermite’s polynomials.

5. Show that e2tx−t2 is the generating function for the Hermite’s polynomial. Hence show that for m < n,

dm

dxm
Hm(x) =

2mn!

(n−m)!
Hn−m(x).
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Unit 12

Course Structure

• Laguerre Polynomial: Generating function, Recurrence relations, Rodrigue’s formula, Orthogonal prop-
erty. Construction and solution of Laguerre differential equation.

12.1 Laguerre’s Equation and Laguerre’s Polynomials

The Laguerre’s equation is of the form

x
d2y

dx2
+ (1− x)

dy

dx
+ ny = 0 (12.1.1)

where n is a constant. The point x = 0 is a regular singular point of the equation (12.1.1). We solve (12.1.1)
by Frobenius Method, about x = 0. Assume that

y =

∞∑
m=0

amxs+m

be the solution of (12.1.1), where a0 ̸= 0 and s is to be determined. The indicial equation in this case will be

s2 = 0,

which has repeated roots s = 0, 0.

Using this value of s, we get

am+1 = − n−m

(m+ 1)2
am

for m = 0, 1, 2, ... . So all the coefficients are found in terms of a0, and one of the solution of (12.1.1) will be

y (x) = a0

[
1− n

12
x+

n (n− 1)

12.22
x2 − ...+ (−1)m

n (n− 1) ... (n−m+ 1)

12.22...m2
xm + ...

]
. (12.1.2)

If n is not a positive integer or zero (12.1.2) is an infinite series. But if n is a positive integer or zero
(12.1.2) will terminate to a finite series and becomes a ploynomial of degree n. Further if we choose a0 = 1,
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the resultant expression defines the Laguerre’s polynomial

Ln(x) = 1− n

12
x+

n (n− 1)

12.22
x2 − ...+ (−1)n

n (n− 1) ...1

12.22...n2
xn

= 1− n

1!.1!
x+

n (n− 1)

2!.2!
x2 − ...+ (−1)m

n (n− 1) ...1

m!.m!
xn

=

(
n

0

)
x0 −

(
n

1

)
x1

1!
+

(
n

2

)
x2

2!
+ ...+ (−1)n

(
n

n

)
xn

n!

i.e.,

Ln(x) =

n∑
r=0

(−1)r

r!

(
n

r

)
xr. (12.1.3)

The first few Laguerre’s polynomials are

1. L0(x) = 1

2. L1(x) = 1− x

3. L2(x) = 1− 2x+ x2

2

4. L3(x) = 1− 3x+ 3x2

2 − x3

6 .

12.2 Generating Function for Laguerre’s Polynomials

The generating function for the Laguerre’s polynomials is

g(x, t) =
e−

xt
1−t

1− t

i.e., we can show that
e−

xt
1−t

1− t
=

∞∑
n=0

tnLn(x),

for |t| < 1.
For

e−
xt
1−t

1− t
=

1

1− t

∞∑
r=0

(
−xt

1− t

)r 1

r!
=

∞∑
r=0

(−1)r

r!
xrtr(1− t)−r−1

=
∞∑
r=0

(−1)r

r!
xrtr

∞∑
s=0

(r + s)!

r!s!
ts

=

∞∑
r=0

∞∑
s=0

(−1)r
(r + s)!

(r!)2s!
xrtr+s.

We put r + s = n, that is, s = n− r, where r is fixed.
Now, s ≥ 0 implies r ≤ n, giving all possible values of r.
Therefore the coefficients of tn is given by

n∑
r=0

(−1)r
n!

(r!)2(n− r)!
xr =

n∑
r=0

(−1)r

r!

(
n

r

)
xr

= Ln(x).

Hence the result follows.
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12.3 Rodrigue’s Formula for Laguerre’s polynomials

The Rodrigue’s representation for Laguerre’s polynomials is

Ln(x) =
ex

n!

dn

dxn
(xne−x).

We use the Leibnitz’s theorem for successive differentiation

D(uv) =
dn

dxn
(uv)

= Dnu.v +

(
n

1

)
Dn−1u.Dv + · · ·+

(
n

r

)
Dn−ru.Drv + · · ·+ uDnv.

Then we get
ex

n!

dn

dxn
(xne−x) =

ex

n!

n∑
r=0

(
n

r

)
Dn−rxnDre−x.

Since Dnxm = m!
(m−n)!x

m−n and Dneax = aneax, we get

ex

n!

dn

dxn
(xne−x) =

ex

n!

n∑
r=0

(
n

r

)
n!

(n− (n− r))!
xn−(n−r)(−1)re−x

=
n∑

r=0

ex

n!

n!

r!(n− r)!
.
n!

r!
.xr.(−1)re−x

= Ln(x).

12.4 Recurrence Relations of Laguerre’s Polynomials

The Laguerre’s polynomials satisfy some recurrence relations.
i) (n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x).

We have, g(x, t) = e
− xt

1−t

1−t =
∑∞

n=0 t
nLn(x). Differentiating both sides with respect to t, we get

∞∑
n=0

tn−1nLn(x) =
1

(1− t)2
e−

xt
1−t − 1

(1− t)
e−

xt
1−t .

x

(1− t)2

=
1

1− t

∞∑
n=0

tnLn(x)−
x

(1− t)2

∞∑
n=0

tnLn(x).

Multiplying both sides by (1− t2) and simplifying, we obtain

∞∑
n=0

tn−1nLn(x)− 2

∞∑
n=0

tnnLn(x) +

∞∑
n=0

tn+1nLn(x) =

∞∑
n=0

tnLn(x)−
∞∑
n=0

tn+1Ln(x)− x

∞∑
n=0

tnLn(x).

Equating the coefficients of tn on both sides, we get the desired result.
ii) xL

′
n(x) = nLn(x)− nLn−1(x).

We have,

g(x, t) =
e−

xt
1−t

1− t
=

∞∑
n=0

tnLn(x).
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Differentiating both sides with respect to x, and using the generating function, we get

∞∑
n=0

tnL
′
n(x) =

1

1− t
e−

xt
1−t .

−t

1− t
=

−t

1− t

∞∑
n=0

tnLn(x).

Multiplying both sides by (1− t) and simplifying, we get

∞∑
n=0

tnL
′
n(x)−

∞∑
n=0

tn+1L
′
n(x) =

∞∑
n=0

tn+1Ln(x).

Equating the coefficients of tn on both sides, we get the desired result.
iii) L

′
n(x) = −

∑n−1
r=0 Lr(x).

We have,

g(x, t) =
e−

xt
1−t

1− t
=

∞∑
n=0

tnLn(x).

Differentiating both sides with respect to x, and using the generating function, we get

∞∑
n=0

tnL
′
n(x) =

1

1− t
e−

xt
1−t .

−t

1− t
=

−t

1− t

∞∑
r=0

trLr(x) = −t

∞∑
s=0

ts
∞∑
r=0

trLr(x).

Thus,
∞∑
n=0

tnL
′
n(x) =

∞∑
r=0

∞∑
s=0

tr+s+1Lr(x).

The coefficients of tn on the LHS is clearly L
′
n(x). We will find the coefficients of tn on the RHS.

Let r + s+ 1 = n, so that s = n− r − 1.
Hence, for a fixed value of r, the coefficient of tn on the RHS of the above equation is −Lr(x).
But, s ≥ 0, which implies that n − r − 1 ≥ 0 =⇒ r ≤ n − 1, which gives all the values of r for which

−Lr(x) is the coefficient of tn.
Hence the total coefficients of tn on the RHS is given by −

∑n−1
r=0 Lr(x) and equating the coefficients on

both sides, we get the desired result.

12.5 Orthogonality Properties of Laguerre’s Polynomials

If Lm(x) and Ln(x) are Laguerre’s polynomials (m,n being positive integers), then∫ ∞

0
e−xLn(x)Lm(x)dx = 0, m ̸= n

= 1, m = n.

The generating function for Laguerre’s polynomial gives

e−
xt
1−t

1− t
=

∞∑
n=0

tnLn(x)

&,
e−

xs
1−s

1− s
=

∞∑
m=0

smLm(x).
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Multiplying both the equations we get

∞∑
n=0

∞∑
m=0

sm.tn.Lm(x)Ln(x) =
e−

xs
1−s

− xt
1−t

(1− s)(1− t)

Multiplying both sides by e−x and integrating with respect to x from 0 to ∞, we get

∞∑
n=0

∞∑
m=0

{∫ ∞

0
e−xLm(x)Ln(x)dx

}
sm.tn =

1

(1− t)(1− s)

∫ ∞

0
e−x(1+t/(1−t)+s(1−s)dx

=
1

(1− t)(1− s)

∣∣∣∣∣ e−x(1+t/(1−t)+s(1−s)

−(1 + t/(1− t) + s(1− s)

∣∣∣∣∣
∞

0

=
1

1− st
.

Now, we have

(1− st)−1 = 1 + st+ s2t2 + · · · =
∞∑
n=0

sntn.

Using this in the previous equation, we get

∞∑
n=0

∞∑
m=0

{∫ ∞

0
e−xLm(x)Ln(x)dx

}
sm.tn =

∞∑
n=0

sntn.

Equating the coefficients of tnsm on both sides, we get the desired result.

Prove that i) Ln (0) = 1, ii) L′
n (0) = −n, iii) L′′

n (0) =
n(n−1)

2 .

Solution. i) Put x = 0 in
e−

xt
1−t

1− t
=

∞∑
n=0

tnLn(x).

Then
1

1− t
=

∞∑
n=0

tnLn(x)

i.e.,
∞∑
n=0

tn =

∞∑
n=0

tnLn(x).

Equating the coefficient of tn from both sides we get the result.
ii) Since Ln(x) satisfies the Laguerre’s equation

x
d2y

dx2
+ (1− x)

dy

dx
+ ny = 0,

we have

x
d2Ln(x)

dx2
+ (1− x)

dLn(x)

dx
+ nLn(x) = 0. (12.5.1)

Put x = 0 in (12.5.1). Then we get

L′
n(0) + nLn(0) = 0

L′
n(0) + n = 0
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Therefore
L′
n (0) = −n.

iii) The generating for Laguerre’s polynomials is

e−
xt
1−t

1− t
=

∞∑
n=0

tnLn(x).

Differentiating it twice with respect to x,we get

e−
xt
1−t

1− t

(
−t

1− t

)2

=

∞∑
n=0

tnL′′
n(x). (12.5.2)

Put x = 0 in (12.5.2). Then we get

∞∑
n=0

tnL′′
n(0) =

t2

(1− t)3

∞∑
n=0

tnL′′
n(0) = t2 (1− t)−3

∞∑
n=0

tnL′′
n(0) = t2

{
1 + 3t+

3.4

2!
t2 +

3.4.5

3!
t3 + ...+

3.4.5...n

(n− 2)!
tn−2 + ...

}
∞∑
n=0

tnL′′
n(0) = t2 + 3t3 +

3.4

2!
t4 +

3.4.5

3!
t5 + ...+

3.4.5...n

(n− 2)!
tn + ....

Equating the coefficient of tn from both sides we get

3.4.5...n

(n− 2)!
= L′′

n(0)

n!

2. (n− 2)!
= L′′

n(0).

Therefore

L′′
n (0) =

n (n− 1)

2
.

■

Exercise 12.5.1. 1. Compute the first few Laguerre polynomials using the summation formula.

2. Prove that
∫∞
0 e−stLn(t)dt = 1/s(1− 1/s)n.

3. Verify the Rodrigue’s formula for first four positive integers.

4. Prove that
∫∞
x e−yLn(y)dy = e−x[Ln(x)− Ln−1(x)].

5. Prove that

(a) L
′
n(x) = n[L

′
n−1(x)− Ln−1(x)].

(b) xLn(x) = nLn(x)− n2Ln−1(x).
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Few Probable Questions

1. Establish the Rodrige’s polynomial for Laguerre polynomial.

2. Show that e−xt/(1−t)/(1− t) is the generating function for Laguerre polynomial.

3. Establish the orthogonality of Laguerre polynomials.
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Unit 13

Course Structure

• Chebyshev Polynomial: Definition, Series representation, Recurrence relations, Orthogonal property.
Construction and solution of Chebyshev differential equation.

13.1 Introduction

In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of orthogonal
polynomials which are related to de Moivre’s formula and which can be defined recursively. Chebyshev
polynomials are important in approximation theory because the roots of the Chebyshev polynomials of the first
kind, which are also called Chebyshev nodes, are used as nodes in polynomial interpolation. The resulting
interpolation polynomial minimizes the problem of Runge’s phenomenon and provides an approximation
that is close to the polynomial of best approximation to a continuous function under the maximum norm.
This approximation leads directly to the method of Clenshaw–Curtis quadrature. We will study about the
Chebyshev polynomials and its properties in this unit.

Objectives

After reading this section, you will be able to

• know the Chebyshev’s equations

• define Chebyshev’s polynomials

• learn the Rodrigue’s formula for Chebyshev’s polynomials

• deduce a generating function for Chebyshev’s polynomials

• learn the orthogonality condition for Chebyshev’s polynomials

• learn the recurrence relations concerning Chebyshev polynomials

• solve various problems related to the above topics
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13.2 Chebyshev’s Equation and Chebyshev’s Polynomials

The Chebyshev differential equation is written as

(1− x2)
d2y

dx2
− x

dy

dx
+ n2y = 0, (13.2.1)

where |x| < 1 and n is any real number. This equation can be converted to a simpler form using the substitu-
tion x = cos t. Then we have

dx = − sin tdt =⇒ dt

dx
= − 1

sin t
.

Hence,
dy

dx
=

dy

dt

dt

dx
= − 1

sin t

dy

dt
,

and

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

dt

dx

(
− 1

sin t

dy

dt

)
= − 1

sin t

d

dt

(
− 1

sin t

dy

dt

)
=

1

sin2 t

[(
−cos t

sin t

)
dy

dt
+

d2y

dt2

]
.

Substituting these in (13.2.1), and simplifying, we get

d2y

dt2
+ n2y = 0,

whose general solution is given by
y(t) = C cos(nt+ a).

For simplicity, we set a = 0. Thus, the general solution of the equation (13.2.1) is given by

y(x) = C cos(n arccosx).

Now, if n is an integer, then the above function is the Chebyshev polynomial of first kind.

Definition 13.2.1. The Chebyshev polynomial of the first kind is called the function

Tn(x) = cos(n arccosx) =
n

2

[n/2]∑
k=0

(−1)k
(n− k − 1)!

k!(n− 2k)!
(2x)n−2k,

where |x| < 1 and n = 0, 1, 2, . . .

Tn(x) given by above is an nth degree polynomial in x. Here Tn(x) is a solution of D.E (13.2.1) is known
as the Chebyshev polynomial of the first kind.

In the expanded form Chebyshev polynomial is given by

Tn(x) = 2n−1

[
xn − n

1!22
xn−2 +

n (n− 3)

2!24
xn−4 − n (n− 4) (n− 5)

3!26
xn−6 + ...

]
.

The first few Chebyshev’s p[olynomials are

1. T0(x) = 1

2. T1(x) = x
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3. T2(x) = 2x2 − 1

4. T3(x) = 4x3 − 3x

5. T4(x) = 8x4 − 8x2 + 1.

Show that Tn(1) = 1.

Proof. By definition we have

Tn(x) = cos
(
n cos−1 x

)
.

Put x = 1,

Tn(1) = cos
(
n cos−1 1

)
= cos (n.0) = 1.

13.3 Generating Functions for Chebyshev’s Polynomials

The function

w(x, t) =
2− xt

1− xt+ t2
,

is the generating function for Chebyshev polynomials, that is,

2− xt

1− xt+ t2
=

∞∑
n=0

Tn(x)t
n.

We have,

1

1− xt+ t2
=

∞∑
k=0

k∑
l=0

(−1)k−l

(
k

k − l

)
xlt2k−l

=
∑
k,l

(−1)k−l

(
k

k − l

)
xlt2k−l.

Put m = 2k − l and n = k − l. Then k = m− n and l = m− 2n. Then the above equation changes to

∑
m,n

(−1)n
(
m− n

n

)
xm−2ntm.
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Now,

(2− xt)
∑
m,n

(−1)n
(
m− n

n

)
xm−2ntm

= 2
∑
m,n

(−1)n
(
m− n

n

)
xm−2ntm

+
∑
m,n

(−1)n+1

(
m− n

n

)
xm−2n+1tm+1

= 2
∑
m,n

(−1)n
(
m− n

n

)
xm−2ntm

+
∑
m,n

(−1)n
(
m− n− 1

n

)
xm−2ntm

=
∑
m,n

(−1)n
{
2

(
m− n

n

)
−
(
m− n− 1

n

)}
xm−2ntm

=
∑
m,n

(−1)n
m

m− n

(
m− n

n

)
xm−2ntm =

∑
m

Tm(x)tm.

Show that
1− t2

1− 2xt+ t2
= T0 (x) + 2

∞∑
n=1

Tn(x)t
n

Hint: Put x = cos θ = 1
2

(
eiθ + e−iθ

)
in LHS we obtain

∞∑
k,l=0

tk+lei(k−l)θ −
∞∑

k,l=0

tk+l+2ei(k−l)θ.

Now, Coefficient of t0, (k = 0, l = 0) : T0 (x) .
Coefficient of t′, (k = 0, l = 1) : 2x = 2T1 (x) ,
Coefficient of tn, (l = n− k) : 2 cosnθ = 2Tn (x) .

13.4 Rodrigue’s Formula for Chebyshev’s Polynomials

The Chebyshev’s polynomial satisfy the following Rodrigue’s formula

Tn(x) =
(−2)nn!

(2n)!

√
1− x2

dn

dxn
(1− x2)n−1/2.

13.5 Recurrence Relations of Chebyshev’s Polynomials

The Chebyshev’s polynomial follows the following recurrence relations
i) 2xTn(x) = Tn+1(x) + Tn−1(x).

1. Proof. Putting x = cos t, we have

Tn−1(t) = cos((n− 1) arccosx) = cos((n− 1)t)

Tn+1(t) = cos((n+ 1) arccosx) = cos((n+ 1)t).
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13.5. RECURRENCE RELATIONS OF CHEBYSHEV’S POLYNOMIALS

Also, we have,

T1(x) = cos(arccosx) = cos(arccos(cos t)) = cos t = x

Tn(x) = cos(n arccosx) = cos(n arccos(cos t)) = cos(nt).

Further,

cos((n− 1)t) + cos((n+ 1)t) = 2 cos
(n− 1)t+ (n+ 1)t

2

= 2 cos
2nt

2
cos

−2t

2
= 2 cos(nt) cos t.

Thus, we get
Tn−1(x) + Tn+1 = 2Tn(x)T1(x) = 2xTn(x).

ii) (1− x2)T
′
n(x) = −nxTn(x) + nTn−1(x).

Proof. Differentiating bothside of Tn(x) = cos (nθ) w.r.t. x we obtain

d

dx
Tn(x) =

d

dx
cos (nθ) =

d

dx
cos
(
n cos−1 x

)
= − sin

(
n cos−1 x

)
.n.

(
− 1√

1− x2

)
i.e;

√
1− x2T

′
n(x) = n sin (nθ) .

Multiplying by
√
1− x2 = sin θ we get

1. Proof.

(1− x2)T
′
n(x) = n. sin θ. sin (nθ)

=
1

2
n. [cos (n− 1) θ − cos (n+ 1) θ]

=
n

2
[Tn−1(x)− Tn+1(x)] .

Eliminate Tn+1(x) using 2xTn(x) = Tn+1(x) + Tn−1(x) we obtain

(1− x2)T
′
n(x) =

n

2
[Tn−1(x)− 2xTn(x) + Tn−1(x)]

= n [Tn−1(x)− xTn(x)] .

iii) For −1 < x < 1, we have T 2
n(x)− Tn−1(x)Tn+1(x) = 1− x2.

Proof. The proof is left to the reader.

iv) Tn(x)− 2xTn−1(x) + Tn−2(x) = 0.

123



UNIT 13.

Proof. We have

Tn(x) + Tn−2(x) = cosnθ + cos (n− 2) θ

= cosnθ + cosnθ. cos 2θ + sinnθ. sin 2θ

= cosnθ (1 + cos 2θ) + 2 sinnθ. sin θ cos θ

= 2 cos θ [cosnθ. cos θ + sinnθ. sin θ]

= 2 cos θ cos (n− 1) θ = 2x.Tn−1(x).

v) Tm+n(x) + Tm−n(x) = 2Tm(x).Tn(x)

Proof. We have

Tm+n(x) + Tm−n(x) = cos (m+ n) θ + cos (m− n) θ

= 2 cosmθ cosnθ = 2Tm(x).Tn(x).

vi) 2 [Tn(x)]
2 = 1 + T2n(x)

Proof. We have

2 [Tn(x)]
2 − T2n(x) = 2 cos2 nθ − cos 2nθ

= 2 cos2 nθ − cos2 nθ + sin2 nθ = 1.

13.6 Orthogonality Properties of Chebyshev’s Polynomials

The Chebyshev’s polynomials satisfy the following orthogonal property∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 0, m ̸= n

= π/2, m = n ̸= 0

= π, m = n = 0.

Therefore, The Chebyshev’s polynomials are orthogonal on [−1, 1] with respect to the weight function
1√

1−x2
.

To prove the orthogonality, consider∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ 1

−1

cos (n arccosx) cos (m arccosx)√
1− x2

dx.

Use the change of variable

x = cos θ

dx = − sin θdθ

= −
√

1− x2dx.
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Therefore ∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = −
∫ 0

−π
cos (nθ) cos (mθ) dθ

=

∫ π

0
cos (nθ) cos (mθ) dθ.

Case 1: For m ̸= n,∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
1

2

∫ π

0
{cos (n+m) θ + cos (n−m) θ} dθ

= 0.

Case 2: For m = n ̸= 0, ∫ 1

−1

{Tn(x)}2√
1− x2

dx =

∫ π

0
cos2 (nθ) dθ

=
1

2

∫ π

0
{1 + cos 2nθ}

= π/2.

Case 3: For m = n = 0, ∫ 1

−1

{Tn(x)}2√
1− x2

dx =

∫ π

0
dθ

= π.

Using the orthogonality properties of Chebyshev’s polynomial an arbitrary function f (x) can be expanded
in Chebyshev’s series as

f (x) =
∞∑
i=0

aiTi (x) ,

where

a0 =
1

π

∫ 1

−1

f (x)√
1− x2

dx

and

an =
2

π

∫ 1

−1

Tn(x)f (x)√
1− x2

dx

for n > 1.

13.7 Minimax Property

The Chebyshev’s polynomials have the remarkable minimax property, which is stated without proof.
Statement: Among all polynomials P (x) of degree n > 0 with leading coefficient 1, 21−nTn(x) deviates

least from zero in the interval [−1, 1] :

max
−1≤x≤1

|P (x)| ≥ max
−1≤x≤1

∣∣21−nTn(x)
∣∣ = 21−n.

Prove that ∫ 1

−1

xmTn(x)√
1− x2

dx = 0, m < n.
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Solution: By Chebyshev’s series we have

xm =
m∑
i=0

aiTi (x) .

When m is even, all the odd coefficients a1, a3, ... will be zero and when m is odd, the even coefficients
a0, a2, a4, ...will be zero.

Now ∫ 1

−1

xmTn(x)√
1− x2

dx =

∫ 1

−1

[
∑m

i=0 aiTi (x)]Tn(x)√
1− x2

dx

=

m∑
i=0

ai

∫ 1

−1

Ti (x)Tn(x)√
1− x2

dx.

Since i = 0, 1, 2, ...,m(< n), therefore using orthogonality of Chebyshev’s polynomials the integral on the
RHS vanishes for i = 0, 1, 2, ...,m(< n).

Exercise 13.7.1. 1. Compute few Chebyshev’s polynomials using the formula given above.

2. Compute few higher Chebyshev’s polynomials using the first Recurrence relation and T1(x) = x.

3. Prove that Tn(−x) = (−1)nTn(x). Thus show that Tn(−1) = (−1)n.

4. Show that

Tn(0) = (−1)n, when n is even

= 0, when n is odd.

5. Show that
[Tn(x)]

2 − Tn+1(x).Tn−1(x) = 1− x2.

Hint: LHS = cos2 nθ − cos (n+ 1) θ. cos (n− 1) θ = cos2 nθ −
(
cos2 nθ − sin2 θ

)
= sin2 θ = 1 −

x2 =RHS.

6. Verify Rodrigue’s formula for first few Chebyshev’s polynomials.

Few Probable Questions

1. Define Chebyshev polynomials. Solve Chebyshev’s equation.

2. Deduce a generating function for Chebyshev polynomials.

3. Prove that Tn(x) is a polynomial of nth degree in x.

4. Show that the leading coefficient of xn in Tn(x) is 2n−1.

5. Show that Chebyshev polynomials are solutions of Chebyshev differential equation.

Hint:
y = Tn(x) = cos

(
n cos−1 x

)
,

y′ =
n sin

(
n cos−1 x

)
√
1− x2

, y′′ =
nx

(1− x2)
3
2

sin
(
n cos−1 x

)
,

so that
(
1− x2

)
y′′ = xy′ − n2y.
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Unit 14

Course Structure

• Integral Equation: Symmetric, separable, iterated and resolvent kernel, Fredholm and Voltera integral
equation their classification, integral equation of convolution type, eigen value eigen function, method
of converting an initial value problem (IVP) into a Voltera integral equation, method of converting a
boundary value problem (BVP) into a Fredholm integral equation.

14.1 Introduction

Many physical problems of science and technology which were solved with the help of theory of ordinary and
partial differential equations can be solved by better methods of theory of integral equations. For example,
while searching for the representation formula for the solution of linear differential equation in such a manner
so as to include boundary conditions or initial conditions explicitly, we arrive at an integral equation. The
solution of the integral equation is much easier than the original boundary value or initial value problem.
The theory of integral equations is very useful tool to deal with problems in applied mathematics, theoretical
mechanics, and mathematical physics. Several situations of science lead to integral equations, e.g., neutron
diffusion problem and radiation transfer problem etc.

14.2 Integral Equation

Definition 14.2.1. An integral equation is an equation is which an unknown function appears under one or
more integral signs. For example, for a ≤ x ≤ b, a ≤ t ≤ b, the equations∫ b

a
K(x, t)y(t)dt = f(x) (14.2.1)

y(x)− λ

∫ b

a
K(x, t)y(t)dt = f(x) (14.2.2)

and y(x) =

∫ b

a
K(x, t)[y(t)]2dt, (14.2.3)
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where the function y(x), is the unknown function while the functions f(x) and K(x, t) are known functions
and λ, a and b are constants, are all integral equations. The above mentioned functions may be complex-
valued functions of the real variables x and t.

Definition 14.2.2. Linear and Non-linear Integral Equation : An integral equation is called linear if only
linear operations are performed in it upon the unknown function. An integral equation which is not linear is
known as a non-linear integral equation. By writing either

L(y) =

∫ b

a
K(x, t) y(t) dt or L(y) = y(x)− λ

∫ b

a
K(x, t)y(t)dt, (14.2.4)

we can easily verify that L is a linear integral operator. In fact, for any constants c1 and c2, we have

L{c1y1(x) + c2y2(x)} = c1L{y1(x)}+ c2L{y2(x)} (14.2.5)

which is well known general criterion for a linear operator. In this block, we shall study only linear integral
equations. The most general type of linear integral equation is of the form

g(x)y(x) = f(x) + λ

∫
a
K(x, t)y(t)dt, (14.2.6)

where the upper limit may be either variable x or fixed. The functions f , g and K are known functions while y
is to be determined; λ is a non-zero real or complex, parameter. The function K(x, t) is known as the kernel
of the integral equation.

Remark 14.2.3. The constant λ can be incorporated into the kernel K(x, t) in Eq.(14.2.6). However, in many
applications λ represents a significant parameter which may take on various values in a discussion being
considered.

Remark 14.2.4. If g(x) ̸= 0, Eq.(14.2.6) is known as linear integral equation of the third kind. When
g(x) = 0, Eq.(14.2.6) reduces to

f(x) + λ

∫
a
K(x, t)y(t)dt,= 0 (14.2.7)

which is known as linear integral equation of the first kind. Again, when g(x) = 1, Eq.(14.2.6) reduces to

y(x) = f(x) + λ

∫
a
K(x, t)y(t)dt. (14.2.8)

which is known as linear integral equation of the second kind. In the present block, we shall study in details
equations of the form (14.2.7) and (14.2.8) only.

Definition 14.2.5. Fredholm Integral Equation : A linear integral equation of the form

g(x)y(x) = f(x) + λ

∫ b

a
K(x, t)y(t)dt, (14.2.9)

where a, b are both constants, f(x)g(x) and K(x, t) are known functions while y(x) is unknown function and
λ is a non-zero real or complex parameter, is called Fredholm integral equation of third kind. The function
K(x, t) is known as the kernel of the integral equation.
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• Setting g(x) = 0 in Eq.(14.2.9), we have the Fredholm integral equation of the first kind.

• Setting g(x) = 1 in Eq.(14.2.9), we have the Fredholm integral equation of the second kind.

• Setting g(x) = 1 and f(x) = 0 in Eq.(14.2.9), we have the Homogeneous Fredholm integral equation of
the second kind.

Definition 14.2.6. Volterra Integral Equation : A linear integral equation of the form

g(x)y(x) = f(x) + λ

x∫
a

K(x, t)y(t) dt, (14.2.10)

where a, b are both constants, f(x), g(x) and K(x, t) are known functions while y(x) is unknown function
and λ is a non-zero real or complex parameter, is called Volterra integral equation of third kind. The function
K(x, t) is known as the kernel of the integral equation.

• Setting g(x) = 0 in Eq. (14.2.10), we have the linear integral equation of the form

f(x) + λ

x∫
a

K(x, t) y(t) dt = 0, (14.2.11)

which is known as Volterra integral equation of the first kind.

• Setting g(x) = 1 in Eq. (14.2.10), we have a linear integral equation of the form

y(x) = f(x) + λ

x∫
a

K(x, t) dt, (14.2.12)

which is known as Volterra integral equation of the second kind.

• Setting f(x) = 0 in Eq. (14.2.10), we have the following integral equation of the form

y(x) = λ

x∫
a

K(x, t) y(t) dt, (14.2.13)

which is known as the homogeneous Volterra integral equation of the second kind.

14.3 Special kinds of kernels

The following special cases of the kernel of an integral equation are of main interest and we shall frequently
come across with such kernels throughout the discussion of this unit.

(i) Symmetric kernel: A kernel K(x, t) is symmetric (or complex symmetric or Hermitian) if

K(x, t) = K̄(t, x)
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where the bar donates the complex conjugate. A real kernel K(x, t) is symmetric if

K(x, t) = K(t, x).

For example, sin(x + t), log(xt), x2t2 + xt + 1 etc. are all symmetric kernels. Again, sin(2x +3t)
and x2t3 + 1 are not symmetric kernels. Again i(x − t) is a symmetric kernel, since in this case, if
K(x, t) = i(x − t), then k(t, x) = i(t − x) and so K̄(t, x) = −i(t − x) = i(x − t) = K(x, t).
On the other hand, i(x + t) is not a symmetric kernel, since in this case, if K(x, t) = i(x + t), then
K̄(t, x) = i(t+ x) = −i(t+ x) = - K(x, t) and so K(x, t) ̸= K̄(x, t).

(ii) Separable or degenerate kernel: A kernel K(x, t) is called separable if it can be expressed as the sum
of a finite number of terms, each of which is the product of a function of x only and a function of t only,
i.e.,

K(x, t) =
n∑

i=1

gi(x)hi(t). (14.3.1)

Remark: The functions gi(x) can be regarded as linearly independent, otherwise the number of terms
in relation (14.3.1) can be further reduced. Recall that the set of functions gi(x) is said to be linearly
independent, if c1g1(x) + c2g2(x) + · · · + cngn(x) = 0, where c1, c2, . . . , cn are arbitrary constants,
then c1 = c2 = . . . = cn = 0.

(iii) Iterated Kernels or functions:

(a) Consider a Fredholm integral equation of the second kind

y(x) = f(x) + λ

∫ b

a
K(x, t)y(t)dt (14.3.2)

Then the iterated kernels Kn(x, t), n = 1, 2, . . . are defined as follows:

K1(x, t) = K(x, t)

and Kn(x, t) =

∫ b

a
K(x, z)Kn−1(z, t)dz, n = 2, 3, . . .

(14.3.3)

(b) Consider a Volterra integral equation of the second kind

y(x) = f(x) + λ

∫ x

a
K(x, t)y(t)dt (14.3.4)

Then the iterated kernels Kn(x, t), n = 1, 2, . . . are defined as follows:

K1(x, t) = K(x, t)

and Kn(x, t) =

∫ x

t
K(x, z)Kn−1(z, t)dz, n = 2, 3, . . .

(14.3.5)

(iv) Resolvent Kernel or reciprocal kernel: Suppose the solution of integral equations

y(x) = f(x) + λ

∫ b

a
K(x, t)y(t)dt (14.3.6)

and
y(x) = f(x) + λ

∫ x

a
K(x, t)y(t)dt (14.3.7)
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be respectively

y(x) = f(x) + λ

∫ b

a
R(x, t;λ)f(t)dt (14.3.8)

and y(x) = f(x) + λ

∫ x

a
Γ(x, t;λ)f(t)dt, (14.3.9)

then R(x, t;λ) and Γ(x, t;λ) is called the resolvent kernel or reciprocal kernel of the given integral
equation.

14.4 Integral equations of the convolution type

Consider an integral equation in which the kernel K(x, t) is dependent solely on the difference x− t,i.e.,

K(x, t) = K(x− t), (14.4.1)

where K is a certain function of one variable. Then integral equations

y(x) = f(x) + λ

x∫
a

K(x− t) y(t) dt,

and y(x) = f(x) + λ

b∫
a

K(x− t) y(t) dt

are called integral equations of the convolution type. K(x−t) is called difference kernel. Let y1(x) and y2(x)
be two continuous functions defined for x ≥ 0. Then the convolution or Faltung of y1 and y2 is denoted and
defined by

y1 ∗ y2 =
x∫

0

y1(x− t)y2(t) dt =

x∫
0

y1(t)y2(x− t) dt. (14.4.2)

The integrals occurring in (14.4.2) are called the convolution integrals. Note that the convolution defined by
relation (14.4.2) is a particular case of the standard convolution.

y1 ∗ y2 =
∞∫

−∞

y1(x− t)y2(t) dt =

∞∫
−∞

y1(t)y2(x− t) dt. (14.4.3)

By setting y1(t) = y2(t) = 0, for t < 0 and t > x, the integrals in (14.4.2) can be obtained from those in
(14.4.3).

14.5 Eigenvalues and Eigen functions

Consider the homogeneous Fredholm integral equation

y(x) = λ

∫ b

a
K(x, t)y(t) dt. (14.5.1)

Then (14.5.1) has the obvious solution y(x) = 0, which is called the zero or trivial solution of (14.5.1). The
values of the parameter λ for which (14.5.1) has a non-zero solution y(x) ̸= 0 are called eigenvalues of
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(14.5.1) or of the kernel K(x, t), and every non-zero solution of (14.5.1) is called on eigenfunction corre-
sponding to the eigenvalue λ.

Remark 1. The number λ = 0 is not an eigenvalue since for λ = 0 it follows from (14.5.1) that y(x) = 0.
Remark 2. If y(x) is an eigenfunction of (14.5.1), then c y(x), where c is an arbitrary constant, is also an

eigenfunction of (14.5.1), which corresponds to the same eigenvalue λ.
Remark 3. A homogeneous Fredholm integral equation of the second kind may, generally, have no eigen-

value and eigenfunction, or it may not have any real eigenvalue or eigenfunction.

14.6 Leibnitz’s rule of differentiation under integral sign

Let F (x, t) and ∂F/∂x be continuous functions of both x and t and let the first derivatives of G(x) and H(x)
be continuous. Then

d

dx

H(x)∫
G(x)

F (x, t) dt =

H(x)∫
G(x)

∂F

∂x
dt+ F [x,H(x)]

dH

dx
− F [x,G(x)]

dG

dx
(14.6.1)

Particular Case: If G and H are absolute constants, then (14.6.1) reduces to

d

dx

H∫
G

F (x, t)dt =

H∫
G

∂F

∂x
dt.

14.7 Multiple integral into a single integral: Conversion formula

The multiple integral of order n can be convert to a ordinary integral of order one using the formula

x∫
a

y(t) dtn =

x∫
a

(x− t)n−1

(n− 1)!
y(t) dt.

Proof. Let

In(x) =

x∫
a

(x− t)n−1y(t) dt, (14.7.1)

where n is a positive integer and a is constant. Differentiating (14.7.1) with respect to x and using Leibnitz’s
rule, we have

dIn
dx

= (n− 1)

x∫
a

(x− t)n−2y(t) dt+ (x− x)n−1y(x)
dx

dx
− (x− 0)n−1y(0)

d0

dx

⇒ dIn/dx = (n− 1) In−1, n > 1 (14.7.2)

From (14.7.1),

I1 =

x∫
a

y(t) dt so that
dI1
dx

= y(x) (14.7.3)
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Now, differentiating (14.7.2) with respect to x successively k times, we have

dkIn
dxk

= (n− 1)(n− 2) · · · (n− k) In−k, n > k (14.7.4)

Using (14.7.4) for k = n− 1, we have
dkIn
dxk

= (n− 1)!I1. (14.7.5)

Differentiating (14.7.5) w.r.t. ‘x’ and using (14.7.3), we obtain

dnIn
dxn

= (n− 1)!y(x) (14.7.6)

From (14.7.1), (14.7.4), and (14.7.5), it follows that In(x) and its first n−1 derivatives all vanish when x = a.
Hence using (14.7.3) and (14.7.6), we obtain

I1(x) =

x∫
a

y (t1) dt1, I2(x) =

x∫
a

I1 (t2) dt2 =

x∫
a

∫ t2

a
y (t1) dt1 dt2

Proceeding likewise, we obtain

In(x) = (n− 1)!

x∫
a

tn∫
a

· · ·
t3∫
a

t2∫
a

y (t1) dt1 dt2 · · · dtn−1 dtn (14.7.7)

Combining (14.7.1) and (14.7.7), we obtain

x∫
a

tn∫
a

· · ·
t3∫
a

t2∫
a

y (t1) dt1 dt2 · · · dtn−1 dtn =
1

(n− 1)!

x∫
a

(x− t)n−1y(t) dt (14.7.8)

From (14.7.8), we obtain
x∫

a

y(t) dtn =

x∫
a

(x− t)n−1

(n− 1)!
y(t) dt.

Example 14.7.1. Show that the function y(x) = (1 + x2)−3/2 is a solution of the Volterra integral equation

y(x) =
1

1 + x2
−
∫ x

0

t

1 + x2
y(t)dt

Solution. Given integral equation is

y(x) =
1

1 + x2
−
∫ x

0

t

1 + x2
y(t)dt (14.7.9)

Also given
y(x) = (1 + x2)−3/2 (14.7.10)

From (14.7.10),
y(t) = (1 + t2)−3/2 (14.7.11)
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The RHS of (14.7.9)

=
1

1 + x2
−
∫ x

0

t

1 + x2
(1 + t2)−3/2, using (14.7.11)

=
1

1 + x2
− 1

1 + x2

∫ x

0
(1 + u)−3/2 · 1

2
du

[
on putting t2 = u and 2tdt = du

]
=

1

1 + x2
− 1

1 + x2
· 1
2

[
(1 + u)−1/2

−1/2

]x2

0

=
1

1 + x2
+

1

1 + x2

[
1

(1 + u)1/2

]x2

0

= (1 + x2)−3/2 = y(x) = LHS of (14.7.9).

Hence, y(x) = (1 + x2)−3/2 is a solution of the given integral equation. ■

14.8 Method of converting an initial value problem into a volterra integral
equation

While searching for the representation formula for the solution of an ordinary differential equation in such a
manner so as to include the boundary conditions or initial conditions explicitly, we always arrive at integral
equations. Thus, a boundary value or an initial value problem is converted to an integral equation. After
converting an initial value problem into an integral equation, it can be solved by shorter methods of solving
integral equations.

The method is illustrated with the help of the following examples.

Example 14.8.1. Convert the following differential equation into integral equation

y′′ + y = 0 when y(0) = y′(0) = 0.

Solution. Given y′′(x) + y(x) = 0, with initial conditions y(0) = 0 and y′(0) = 0. From the given
differential equation we have

y′′(x) = −y(x) (14.8.1)

Integrating both sides of (14.8.1) w.r.t. ‘x′ from 0 to x, we have

x∫
0

y′′(x) dx = −
x∫

0

y(x) dx or
[
y′(x)

]x
0
= −

x∫
0

y(x) dx

or y′(x)− y′(0) = −
x∫

0

y(x) dx or y′(x) = −
x∫

0

y(x) dx
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Integrating both sides of w.r.t. ‘x′ from 0 to x, we have

x∫
0

y′(x) dx = −
x∫

0

y(x)dx2 or [y(x)]x0 = −
x∫

0

y(x)dx2

or y(x)− y(0) = −
x∫

0

y(x) dx2 or y(x) = −
x∫

0

y(t)dt2

or y(x) = −
x∫

0

(x− t)y(t) dt

which is the desired integral equation.

Example 14.8.2. Convert y′′ − sinxy′ + exy = x with initial conditions y(0) = 1, y′(0) = −1 to a Volterra
integral equation of the second kind. Conversely, derive the original differential equation with the initial
conditions from the integral equation obtained.

Solution. Given y′′(x) − sinxy′(x) + exy(x) = x with initial conditions y(0) = 1 and y′(0) = −1.
From the given differential equation, one can write

y′′(x) = x− exy(x) + sinxy′(x). (14.8.2)

Integrating both sides of (14.8.2) w.r.t. ‘x′ from 0 to x, we have

x∫
0

y′′(x) dx =

x∫
0

x dx−
x∫

0

exy(x) dx+

x∫
0

sinxy′(x) dx

[
y′(x)

]x
0
=

x2

2
−

x∫
0

exy(x) dx+ [sinx y(x)]x0 −
x∫

0

cosx y(x) dx

y′(x)− y′(0) =
x2

2
−

x∫
0

exy(x) dx+ sinxy(x)−
x∫

0

cosx y(x) dx

y′(x) + 1 =
x2

2
+ sinxy(x)−

x∫
0

(ex + cosx) y(x) dx

y′(x) =
x2

2
− 1 + sinx y(x)−

x∫
0

(ex + cosx) y(x) dx (14.8.3)

135



UNIT 14.

Integrating both sides of (14.8.3) w.r.t. ‘x′ from 0 to x, we have
x∫

0

y′(x) dx =

x∫
0

(
x2

2
− 1

)
dx+

x∫
0

sinx y(x) dx−
x∫

0

(ex + cosx) y(x) dx2

[y(x)]x0 =

[
x3

6
− x

]x
0

+

x∫
0

sin t y(t) dt−
x∫

0

(
et + cos t

)
y(t) dt2

y(x)− y(0) =
x3

6
− x+

x∫
0

sin t y(t) dt−
x∫

0

(x− t)
(
et + cos t

)
y(t) dt

y(x)− 1 =
x3

6
− x+

x∫
0

{
sin t− (x− t)

(
et + cos t

)}
y(t) dt,

y(x) =
x3

6
− x+ 1 +

x∫
0

[
sin t− (x− t)

(
et + cos t

)]
y(t) dt (14.8.4)

which is the required Volterra integral equation of the second kind.

Second Part: Derivation of the given differential equation together with given initial conditions from inte-
gral equation (14.8.4).

Differentiating both sides of (14.8.4) w.r.t. ‘x′, we get

y′(x) =
x2

2
− 1 +

d

dx

x∫
0

[
sin t− (x− t)

(
et + cos t

)]
y(t) dt

y′(x) =
x2

2
− 1 +

x∫
0

∂

∂x

[{
sin t− (x− t)

(
et + cos t

)}
y(t)

]
dt

+ [sinx− (x− x) (ex + cosx)] y(x)
dx

dx
−
[
sin 0− (x− 0)

(
e0 + cos 0

)]
y(0)

d0

dx
[using Leibnitz’s rule of differentiation under integral sign

y′(x) =
x2

2
− 1−

x∫
0

(
et + cos t

)
y(t) dt+ sinx y(x). (14.8.5)

Differentiating both sides of (14.8.5) with respect to ‘x′ we get

y′′(x) = x+ cosxy(x) + sinxy′(x)− d

dx

x∫
0

(
et + cos t

)
y(t) dt

y′′(x) = x+ cosx y(x) + sinxy′(x)−

 x∫
0

∂

∂x

{(
et + cos t

)
y(t)

}
dt

+(ex + cosx) y(x)
dx

dx
−
(
e0 + cos 0

)
y(0)

d0

dx

]
,

y′′(x) = x+ cosxy(x) + sinxy′(x)− [0 + (ex + cosx) y(x) + 0]

y′′(x)− sinx y′(x) + ex y(x) = x,
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which is the same as the given differential equation.

Example 14.8.3. Convert y′′(x) − 3y′(x) + 2y(x) = 4 sinx with initial conditions y(0) = 1, y′(0) = −2
into a Volterra integral equation of the second kind. Conversely, derive the original differential equation with
initial conditions from the integral equation obtained.

Solution. Given
y′′(x)− 3y′(x) + 2y(x) = 4 sinx, y(0) = 1, y′(0) = −2 (14.8.6)

From (14.8.6),
y′′(x) = 4 sinx− 2y(x) + 3y′(x). (14.8.7)

Integrating both sides of (??) w.r.t. ‘x’ from 0 to x, we have

x∫
0

y′′(x) dx = 4

x∫
0

sinx dx− 2

x∫
0

y(x) dx+ 3

x∫
0

y′(x) dx

[
y′(x)

]x
0
= 4 [− cosx]x0 − 2

x∫
0

y(x) dx+ 3 [y(x)]x0

y′(x)− y′(0) = 4(− cosx+ 1)− 2

x∫
0

y(x) dx+ 3 [y(x)− y(0)]

y′(x) + 2 = 4− 4 cosx− 2

x∫
0

y(x) dx+ 3y(x)− 3

y′(x) = −1− 4 cosx− 3y(x)− 2

x∫
0

y(x) dx (14.8.8)

Integrating both sides of (14.8.8) w.r.t. ‘x’ from 0 to x, we have

x∫
0

y′(x) dx = −
x∫

0

dx− 4

x∫
0

cosx dx+ 3

x∫
0

y(x) dx− 2

x∫
0

y(x) dx2

[y(x)]x0 = −x− 4 [sinx]x0 + 3

x∫
0

y(x) dx− 2

x∫
0

y(t)dt2

y(x)− y(0) = −x− 4 sinx+ 3

x∫
0

y(t) dt− 2

x∫
0

(x− t)y(t) dt,

y(x) = 1− x− 4 sinx+

x∫
0

[3− 2(x− t)] y(t) dt, (14.8.9)

which is the required Volterra integral equation of the second kind.

Second Part: Derivation of the given differential equation together with given initial conditions from inte-
gral equation (14.8.9).
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Differentiating both sides of (14.8.9) w.r.t. ‘x’, we get

y′(x) = −1− 4 cosx+
d

dx

 x∫
0

[3− 2(x− t)]

 y(t) dt

⇒ y′(x) = −1− 4 cosx+

x∫
0

∂

∂x
[{3− 2(x− t)}y(t) dt] dt+ [3− 2(x− x)]y(x)

dx

dx
−

d0
[3− 2(x− 0)]y(0)

dx⇒ y′(x) = −1− 4 cosx+

x∫
0

(−2)y(t) dt+ 3y(x)

⇒ y′(x) = −1− 4 cosx+ 3y(x)− 2

x∫
0

y(t) dt (14.8.10)

Differentiating both sides of (14.8.10) w.r.t. ‘x’, we get

y′′(x) = 4 sinx+ 3y′(x)− 2
d

dx

x∫
0

y(t) dt

⇒ y′′(x) = 4 sinx+ 3y′(x)− 2

 x∫
0

∂

∂x
y(t)dt+ y(x)

dx

dx
− y(0)

d0

dx


⇒ y′′(x) = 4 sinx+ 3y′(x)− 2[0 + y(x)− 0]

⇒ y′′(x)− 3y′(x) + 2y(x) = 4 sinx, (14.8.11)

which is the same as the given differential equation. Putting x = 0 in (14.8.9), we get y(0) = 1. Further
putting x = 0 in (14.8.10), we get y′(0) = −1− 4 + 3y(0) = −1− 4 + 3 = −2 = −2. Thus,

y(0) = 1 and y′(0) = −2 (14.8.12)

(14.8.11) and (14.8.12) together give us the given differential equation and initial conditions.

14.8.1 Initial Value Problem

When an ordinary differential equation is to be solved under conditions involving dependent variable and its
derivative at the same value of the independent variable, then the problem under consideration is said to be an
initial value problem. For example

d2y

dx2
+ y = x, y(0) = 2, y′(0) = 3

and
d2y

dx2
+ y = x, y(1) = 2, y′(1) = 2

are both initial value problems.
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Method of converting an initial value problem into a Volterra integral equation

This method is illustrated with the help of the following example.

Example 14.8.4. Convert the following differential equation into integral equation:

y′′ + y = 0 when y(0) = y′(0) = 0.

Solution. Given
y′′ + y = 0 (14.8.13)

with initial conditions

y(0) = 0 (14.8.14)

y′(0) = 0 (14.8.15)

From (14.8.13),
y′′(x) = −y(x) (14.8.16)

Integrating both sides of (14.8.16) with respect to ‘x’ from 0 to x, we have∫ x

0
y′′(x)dx = −

∫ x

0
y(x)dx

or,
[
y′(x)

]x
0
= −

∫ x

0
y(x)dx

or, y′(x)− y′(0) = −
∫ x

0
y(x)dx

or, y′(x) = −
∫ x

0
y(x)dx [using (14.8.15)] (14.8.17)

Integrating both sides of (14.8.17) with respect to ‘x’ from 0 to x, we have∫ x

0
y′(x)dx = −

∫ x

0
y(x)dx2

or, [y(x)]x0 = −
∫ x

0
y(x)dx2

or, y(x)− y(0) = −
∫ x

0
y(x)dx2

or, y(x) = −
∫ x

0
y(t)dt2 [using (14.8.14)] (14.8.18)

or, y(x) = −
∫ x

0
(x− t)y(t)dt,

using the result
∫ x

a
y(t)dtn =

∫ x

a

(x− t)n−1

(n− 1)!
y(t)dt, which is the desired result. ■

14.8.2 Boundary Value Problem

When an ordinary differential equation is to be solved under conditions involving dependent variable and its
derivatives at two different values of independent variable, then the problem under consideration is said to be
a boundary value problem. For example,

d2y

dx2
+ y = 0, y(a) = y1, y(b) = y2

is a boundary value problem.
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Method of converting a boundary value problem into a Fredholm integral equation:

We explain this method with the help of the following solved examples.

Example 14.8.5. Reduce the following boundary value problem into an integral equation:

d2y

dx2
+ λy = 0, y(0) = 0, y(l) = 0.

Solution. Given

y′′(x) + λy(x) = 0 (14.8.19)

with y(0) = 0 (14.8.20)

y(l) = 0. (14.8.21)

From (14.8.19),
y′′(x) = −λy(x). (14.8.22)

Integrating both sides of (14.8.22) with respect to ‘x’ from 0 to x, we have∫ x

0
y′′(x)dx = −λ

∫ x

0
y(x)dx

or,
[
y′(x)

]x
0
= −λ

∫ x

0
y(x)dx

or, y′(x)− y′(0) = −λ

∫ x

0
y(x)dx. (14.8.23)

Let y′(0) = c, a constant. Then (14.8.23) becomes

y′(x) = c− λ

∫ x

0
y(x)dx. (14.8.24)

Integrating both sides of (14.8.24) with respect to ‘x’ from 0 to x, we have∫ x

0
y′(x)dx = c

∫ x

0
dx− λ

∫ x

0
y(x)dx2

or, [y(x)]x0 = cx− λ

∫ x

0
y(t)dt2

or, y(x)− y(0) = cx− λ

∫ x

0
(x− t)y(t)dt

or, y(x)− 0 = cx− λ

∫ x

0
(x− t)y(t)dt [using (14.8.20)] (14.8.25)

or, y(x) = cx− λ

∫ x

0
(x− t)y(t)dt (14.8.26)

Putting x = l in (14.8.26) we get

y(l) = cl − λ

∫ l

0
(l − t)y(t)dt

or, 0 = cl − λ

∫ l

0
(l − t)y(t)dt [using (14.8.21)]

or, c =
λ

l

∫ l

0
(l − t)y(t)dt (14.8.27)
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14.9. VOLTERRA INTEGRAL EQUATIONS

Using (14.8.27), (14.8.26) reduces to

y(x) =
λ

l

∫ l

0
(l − t)y(t)dt− λ

∫ x

0
(x− t)y(t)dt (14.8.28)

or, y(x) =

∫ l

0

λx(l − t)

l
y(t)dt− λ

∫ x

0
(x− t)y(t)dt

or, y(x) =

∫ x

0

λx(l − t)

l
y(t)dt+

∫ l

x

λx(l − t)

l
y(t)dt−

∫ x

0
λ(x− t)y(t)dt

or, y(x) = λ

∫ x

0

[
x(l − t)

l
− (x− t)

]
y(t)dt+ λ

∫ l

x

x(l − t)

l
y(t)dt

or, y(x) = λ

∫ x

0

x(l − t)− l(x− t)

l
y(t)dt+ λ

∫ l

x

x(l − t)

l
y(t)dt

or, y(x) = λ

[∫ x

0

t(l − x)

l
y(t)dt+

∫ l

x

x(l − t)

l
y(t)dt

]
or, y(x) = λ

∫ l

0
K(x, t)y(t)dt, (14.8.29)

where
K(x, t) =

t

l
(l − x), if 0 < t < x

=
x

l
(l − t), if x < t < l

(14.8.30)

where (14.8.29) is the required Fredholm integral equation where K(x, t) is given by (14.8.30). ■

14.9 Volterra Integral Equations

Definition 14.9.1. Volterra Integral Equation : A linear integral equation of the form

g(x)y(x) = f(x) + λ

∫ x

a
K(x, t)y(t)dt, (14.9.1)

where a, b are both constants, f(x), g(x) and K(x, t) are known functions while y(x) is unknown function;
λ is a non-zero real or complex parameter is called Volterra integral equation of third kind. The function
K(x, t) is known as the kernel of the integral equation.

• Setting g(x) = 0 in Eq.(14.9.1), we have the Volterra integral equation of the first kind.

• Setting g(x) = 1 in Eq.(14.9.1), we have the Volterra integral equation of the second kind.

• Setting g(x) = 1 and f(x) = 0 in Eq.(14.9.1), we have the Homogeneous Volterra integral equation of
the second kind.

14.9.1 Solution of Volterra integral equations

14.9.2 Determination of Resolvent kernel for Volterra integral equations

Example 14.9.2. Find the resolvent kernel of the Volterra integral equation with the kernel K(x, t) = 1.
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Solution : Iterated kernels Kn(x, t) are given by

K1(x, t) = K(x, t) (14.9.2)

and Kn(x, t) =

∫ x

t
K(x, z)Kn−1(z, t) dz, n = 1, 2, 3, . . . (14.9.3)

Given K(x, t) = 1. Thus we have
K1(x, t) = K(x, t) = 1

Putting n = 2 in Eq.(14.9.3) we have

K2(x, t) =

∫ x

t
K(x, z)K1(z, t) dz =

∫ x

t
dz =

[
z
]x
t
= x− t

Putting n = 3 in Eq.(14.9.3) we have

K3(x, t) =

∫ x

t
K(x, z)K2(z, t) dz =

∫ x

t
1 · (z − t) dz =

[
(z − t)2)

2

]x
t

=
(x− t)2

2!

Putting n = 4 in Eq.(14.9.3) we have

K4(x, t) =

∫ x

t
K(x, z)K3(z, t) dz =

∫ x

t
1 · (z − t)2

2!
dz =

1

2!

[
(z − t)3)

3

]x
t

=
(x− t)3

3!

Observing above, we find by mathematical induction, that

Kn(x, t) =
(x− t)n−1

(n− 1)!
, n = 1, 2, 3, . . .

Now by the definition of the resolvent kernel, we have

R(x, t;λ) =
∞∑

m=1

Km(x, t) = K1(x, t) + λK2(x, t) + λ2K3(x, t) + · · ·

= 1 +
λ(x− t)

1!
+

[λ(x− t)]2

2!
+

[λ(x− t)]3

3!
+ · · ·

= eλ(x−t)

Exercise 14.9.3. Find the resolvent kernel of the Volterra integral equation with the kernel

i) K(x, t) = ex−t ii) K(x, t) = (2 + cosx)/(2 + cos t)

Answers :

i) R(x, t;λ) = e(x−t)(1+λ), (ii) R(x, t;λ) =
2 + cosx

2 + cos t
eλ(x−t)
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Unit 15

Course Structure

• Homogeneous Fredholm integral equation of the second kind with separable or degenerate kernel; clas-
sical Fredholm theory- Fredholm alternative, Fredholm theorem.

15.1 Introduction

In Unit 11, we obtained the solution of the Fredholm integral equation of the second kind

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (15.1.1)

as a uniformly convergent power series in the parameter λ for |λ| suitably small. Fredholm derived the solution
of (15.1.1) in general form which is valid for all values of the parameter λ. He gave three important results
which are known as Fredholm’s first, second and third fundamental theorems. In the present unit we propose
to discuss these theorems.

Objective

The objective of this course is to learn the students all of the above topics and by the end of it students should
be able to

• know different fundamental theorems of Fredholm integral equation.

• know the method of solution of Fredholm integral equation using fundamental theorems.

• know various aspects of Hilbert-Schmidt theory

• know fundamental properties of eigenvalues and eigenfunctions for symmetric kernels
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15.2 Classical Fredholm Theory

15.2.1 Fredholm’s First Fundamental Theorem

The non-homogeneous Fredholm integral equation of second kind

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (15.2.1)

where the functions f(x) and y(t) are integrable, has a unique solution

y(x) = f(x) + λ

∫ b

a
R(x, t;λ) f(t) dt (15.2.2)

where the resolvent kernel R(x, t;λ) is given by

R(x, t;λ) =
D(x, t;λ)

D(λ)
(15.2.3)

with D(λ) ̸= 0, is a meromorphic function of the complex variable λ, being the ratio of two entire functions
defined by the series

D(x, t;λ) = K(x, t) +

∞∑
p=1

(−λ)p

p!

∫
· · ·
∫

K

(
x, z1, · · · , zp
t, z1, · · · , zp

)
dz1 · · · dzp

and D(λ) = 1 +
∞∑
p=1

(−λ)p

p!

∫
· · ·
∫

K

(
z1, · · · , zp
z1, · · · , zp

)
dz1 · · · dzp, (15.2.4)

both of which converge for all values of λ. Also, note the following symbol for the determinant formed by the
values of the values of the kernel at all points (xi, ti)∣∣∣∣∣∣∣∣∣

K(x1, t1) K(x1, t2) · · · K(x1, tn)
K(x2, t1) K(x2, t2) · · · K(x2, tn)

...
... . . .

...
K(xn, t1) K(xn, t2) · · · K(xn, tn)

∣∣∣∣∣∣∣∣∣ = K

(
x1, x2, · · · , xn
t1, t2, · · · , tn

)
(15.2.5)

which is known as the Fredholm determinant. In particular, the solution of the Fredholm homogeneous equa-
tion

y(x) = λ

∫ b

a
K(x, t) y(t) dt (15.2.6)

is identically zero.

Result 15.2.1. For Fredholm integral equation

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (15.2.7)

the resolvent kernel is given by

R(x, t;λ) =
D(x, t;λ)

D(λ)
(15.2.8)
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15.2. CLASSICAL FREDHOLM THEORY

where

D(x, t;λ) = K(x, t) +

∞∑
m=1

(−λ)m

m!
Bm(x, t) (15.2.9)

and D(λ) = 1 +

∞∑
m=1

(−λ)m

m!
Cm (15.2.10)

where

Bn(x, t) =

∫ b

a
· · ·
∫ b

a︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣
K(x, t) K(x, z1) · · · K(x, zn)
K(z1, t) K(z1, z1) · · · K(z1, zn)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

K(zn, t) K(zn, z1) · · · K(zn, zn)

∣∣∣∣∣∣∣∣∣∣
dz1 dz2 · · · dzn, (15.2.11)

and Cn =

∫ b

a
· · ·
∫ b

a︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣
K(z1, z1) K(z1, z2) · · · K(z1, zn)
K(z2, z1) K(z2, z2) · · · K(z2, zn)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

K(zn, z1) K(zn, z2) · · · K(zn, zn)

∣∣∣∣∣∣∣∣∣∣
dz1 dz2 · · · dzn, (15.2.12)

The function D(x, t;λ) is called the Fredholm minor and D(λ) is called the Fredhom determinant.

15.2.2 Alternative Procedure of calculating Bm(x, t) and Cm

The following results will be used

C0 = 1

Cp =

∫ b

a
Bp−1(s, s) ds, p ≥ 1

B0(x, t) = K(x, t) (15.2.13)

Bp(x, t) = Cp K(x, t)− p

∫ b

a
K(x, z) Bp−1(z, t) dz, p ≥ 1.

After getting R(x, t;λ), the required solution is given by

y(x) = f(x) + λ

∫ b

a
R(x, t;λ) f(t) dt (15.2.14)

Example 15.2.2. Using Fredholm determinants, find the resolvent kernel and hence solve the following inte-
gral equation

y(x) = f(x) + λ

∫ 1

0
xet y(t) dt, (λ ̸= 1)

Solution : Here
K(x, t) = xet
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From Eq.(15.2.11)∫ 1

B1(x, t) =
0

∣ ∣ ∫ ∣ ∣
1

∣∣K(x, t) K(x, z ) 1 xet xez1∣ 1 dz1 = dz1 = 0
K(z1, t) K(z t z1∣ 1, z1)

∣∣
0

∣∣
z1e z1e

∣∣
B2(x, t) =

∫ ∫ K(x, z ) t
1
∣∣K(x, t) 1 K(x, z2) 1 1 xe xez1 xez2

K(z1, t) K(z ,

∣
z ) K(z ,

∣
z ) dz dz

∣
= z et z ez11 1 1 2 1 2 1 1 z1e

z2 dz1 dz2 = 0
0 0 K(z , t z

1) K(z 0 1 z2
2 t) K(z2, z 0

2, z2)

∣∣∣ ∫ ∫ ∣∣∣
z2e z2e z2e

∣∣∣∣ ∣ ∣ ∣∣∣ ∣∣ ∣∣ ∣∣
Since B1(x, t) = B2(x, t) = 0, it follows that Bn(x, t) = 0, for n ≥ 1. Now from Eq.(15.2.12), we have

C1 =

∫ 1

0
K(z1, z1) dz1 =

∫ 1

0
z1e

z1 dz1 =
[
z1e

z1
]1
0
−
∫ 1

0
ez1dz1 = e−

[
ez1
]1
0
= e− (e− 1) = 1.

C2 =

∫ 1

0

∫ 1

0

∣∣∣∣K(z1, z1) K(z1, z2)
K(z2, z1) K(z2, z2)

∣∣∣∣ dz1 dz2 = ∫ 1

0

∫ 1

0

∣∣∣∣z1ez1 z1e
z2

z2e
z1 z2e

z2

∣∣∣∣ dz1 dz2 = 0

It follows that Cm = 0 for all m ≥ 2. Now Eq.(15.2.9) and Eq.(15.2.10) respectively gives

D(x, t;λ) = K(x, t)− λB1(x, t) +
λ2

2!
B2(x, t)− · · · = xet

D(λ) = 1− λC1 +
λ2

2!
C2 − . . . = 1− λ

Hence, Eq.(15.2.8) yields

R(x, t;λ) =
D(x, t;λ)

D(λ)
=

xet

1− λ

Hence the required solution is

y(x) = f(x) + λ

∫ 1

0
R(x, t;λ) f(t) dt

⇒ y(x) = f(x) + λ

∫ 1

0

xet

1− λ
f(t) dt

⇒ y(x) = f(x) +
λx

1− λ

∫ 1

0
et f(t) dt.

Alternative Method : We shall use the results of Eqs.(15.2.13) to compute R(x, t;λ) as follows. First
write down these results for complete solution. Here

C0 = 1

B0(x, t) = K(x, t) = xet

C1 =

∫ 1

0
B0(s, s) ds =

∫ 1

0
ses ds =

[
ses
]1
0
−
∫ 1

0
es ds = e−

[
es
]1
0
= e− (e− 1) = 1

B1 = C1K(x, t)−
∫ 1

0
K(x, z)B0(z, t) dz = xet −

∫ 1

0
xezzet dz == xet − xet

∫ 1

0
zez dz = 0

C2 =

∫ 1

0
B1(s, s) ds = 0

B2(x, t) = C2K(x, t)− 2

∫ 1

0
K(x, z) B1(z, t) dz = 0

∴ Bm(x, t) = 0 for all m ≥ 1 and Cm = 0 for all m ≥ 2.
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15.2. CLASSICAL FREDHOLM THEORY

Now we proceed as before to determine R(x, t;λ) and can solve the given Fredholm integral equation.

Important Observation : The reader will find that the above alternative method is a short cut. However,
he should find the required quantities strictly in the following order :

C0, B0(x, t), C1, B1(x, t), C2, B2(x, t) and so on.

Exercise 15.2.3. Using Fredholm determinants, find the resolvent kernel and hence solve the following inte-
gral equation

i) y(x) = e−x + λ

∫ 1

0
xet y(t) dt, ii) y(x) = 1 +

∫ 1

0
(1− 3xt) y(t) dt,

iii) y(x) = sinx+ λ

∫ 10

4
x y(t) dt, iv) y(x) = 1 +

∫ π

0
sin(x+ t) y(t) dt

Answers :

i) y(x) = e−x +
λx

1− λ
, if λ ̸= 1 (ii) y(x) =

8− 6x

3
,

(iii) y(x) = sinx+
2λx sin 7 sin 3

1− 42λ
, (iv) y(x) = 1 +

4

4− π2
(2 cosx+ π sinx)

15.2.3 Fredholm Second Fundamental Theorem

If λ0 is a zero of multiplicity m of the function D(λ), then the homogeneous integral equation

y(x) = λ0

∫ b

a
K(x, t) y(t) dt (15.2.15)

possesses at least one, and the most m, linearly independent solutions

yi(x) = Dr

 x1, · · · , xi−1, x, xi+1, · · · , xr
λ0

t1, · · · , ti−1, t, ti+1, · · · , tr

 , i = 1, 2, . . . , r; 1 ≤ r ≤ m.(15.2.16)

not identically zero. Any other solution of this equation is a linear combination of these solutions. Here, we
have to remember the following definition of the Fredholm minor

Dn

(
x1, x2, · · · , xn
t1, t2, · · · , tn

)
= K

(
x1, x2, · · · , xn
t1, t2, · · · , tn

)
+

∞∑
p=1

(−λ)p

p!

∫ b

a
· · ·
∫ b

a
K

(
x1, · · · , xn, z1 · · · zp
t1, · · · , tn, z1 · · · zp

)
dz1 · · · dzp,(15.2.17)

where {xi} and {ti}, i = 1, 2, . . . , n, are two sequences of arbitrary variables. Series (15.2.17) converges for
all values of λ and hence it is an entire function of λ.
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15.2.4 Fredholm Third Fundamental Theorem

For an inhomogeneous integral equation

y(x) = f(x) + λ0

∫ b

a
K(x, t) y(t) dt (15.2.18)

to possesses a solution in the case D(λ0) = 0, it is necessary and sufficient that the given function f(x) be
orthogonal to all the eigenfunctions zi(x), i = 1, 2, . . . , ν, of the transposed homogeneous equation corre-
sponding to the eigenvalue λ0. The general solution has the form

y(x) = f(x) + λ

∫ b

a

Dr+1

 x, x1, x2, · · · , xr
λ0

t, t1, t2, · · · , tr


Dr

 x1, x2, · · · , xr
λ0

t1, t2, · · · , tr

 f(t) dt+
r∑

h=1

ChΦh(x), (15.2.19)

where Φi(x) are given by

Φi(x) =

Dr

 x1, · · · , xi−1, x, xi+1, · · · , xr
λ0

t1, · · · · · · · · · · · · tr


Dr

 x1, · · · , xi−1, xi, xi+1, · · · , xr
λ0

t1, · · · · · · · · · · · · tr

 , i = 1, 2, . . . , r. (15.2.20)
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Unit 16

Course Structure

• Method of successive approximations: Solution of Fredholm and Voltera integral equation of the sec-
ond kind by successive substitutions & Iterative method (Fredholm integral equation only), reciprocal
function, determination of resolvent kernel and solution of Fredholm integral equation.

16.1 Solution of Fredholm integral equations

16.1.1 Method of Successive approximations :

Consider the Fredholm integral equation of the second kind given by Eq. (16.1.4). As a zero-order approxi-
mation to the required solution y(x), let us take y0(x) = f(x). Further, if yn(x) and yn−1(x) are the n-th and
(n− 1)-th order approximations respectively, then these are connected by

yn(x) = f(x) + λ

∫ b

a
K(x, t)yn−1(t)dt. (16.1.1)

We know that the iterated kernels (or iterated functions) Kn(x, t), (n = 1, 2, 3, . . .) are defined by

K1(x, t) = K(x, t)

and Kn(x, t) =

∫ b

a
K(x, z)Kn−1(z, t)dz.

Putting n = 1 in Eq.(16.1.1), the first-order approximation y1(x) is given by

y1(x) = f(x) + λ

∫ b

a
K(x, t)y0(t)dt.

⇒ y1(x) = f(x) + λ

∫ b

a
K(x, t)f(t)dt. (16.1.2)
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Putting n = 2 in Eq.(16.1.1), the second-order approximation y2(x) is given by

y2(x) = f(x) + λ

∫ b

a
K(x, t)y1(t) dt.

⇒ y2(x) = f(x) + λ

∫ b

a
K(x, z)y1(z) dz

⇒ y2(x) = f(x) + λ

∫ b

a
K(x, z)

[
f(z) + λ

∫ b

a
K(z, t) f(t) dt

]
dz

⇒ y2(x) = f(x) + λ

∫ b

a
K(x, t) f(t) dt+ λ2

∫ b

a
f(t)

[∫ b

a
K(x, z)K(z, t) dz

]
dt

⇒ y2(x) = f(x) + λ

∫ b

a
K1(x, t) f(t) dt+ λ2

∫ b

a
K2(x, t)f(t) dt

⇒ y2(x) = f(x) +
2∑

m=1

λm

∫ b

a
Km(x, t)f(t) dt.

Proceeding likewise, we easily obtain by Mathematical induction the n-th approximate solution yn(x) as

yn(x) = f(x) +
n∑

m=1

λm

∫ b

a
Km(x, t) f(t) dt. (16.1.3)

16.1.2 Resolvent kernel :

Suppose solution of Fredholm integral equation of the second kind

y(x) = f(x) + λ

∫ b

a
K(x, t)y(t)dt (16.1.4)

takes the form

y(x) = f(x) + λ

∫ b

a
R(x, t;λ)f(t)dt, (16.1.5)

then R(x, t;λ) is known as the resolvent kernal of (16.1.4). If Kn(x, t) be iterated kernals then

R(x, t;λ) =
∞∑

m=1

λm−1Km(x, t)

Example 16.1.1. Find the iterated kernels for the following kernels

K(x, t) = sin(x− t), 0 ≤ x ≤ 2π, 0 ≤ t ≤ 2π

Solution : Iterated kernel Kn(x, t) are given by

K1(x, t) = K(x, t) (16.1.6)

and Kn(x, t) =

∫ 2π

0
K(x, z)Kn−1(z, t) dz, (n = 2, 3, . . .) (16.1.7)
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From Eq.(16.1.6) K1(x, t) = K(x, t) = sin(x− 2t). Putting n = 2 in Eq.(16.1.7), we have

K2(x, t) =

∫ 2π

0
K(x, z)K1(z, t) dz =

∫ 2π

0
sin(x− 2z) sin(z − 2t) dz

=
1

2

∫ 2π

0
[cos(x+ 2t− 3z)− cos(x− 2t− z)] dz =

1

2

[
−1

3
sin(x+ 2t− 3z) + sin(x− 2t− z

]
= 0, on simplification.

Putting n = 3 in Eq.(16.1.7), we have

K3(x, t) =

∫ 2π

0
K(x, z)K2(z, t) dz = 0 [∵ K2(z, t) = 0]

Thus, K1(x, t) = sin(x− 2t) and Kn(x, t) = 0 for n = 2, 3, 4, . . ..

Example 16.1.2. Determine the resolvent kernels for the Fredholm integral equation having kernels

K(x, t) = ex+t; a = 0, b = 1.

Solution : Iterated kernels Km(x, t) are given by

K1(x, t) = K(x, t) (16.1.8)

Km(x, t) =

∫ 1

0
K(x, z)Km−1(z, t) dz (16.1.9)

From Eq.(16.1.8) K1(x, t) = K(x, t) = ex+t.

Putting n = 2 in Eq.(16.1.9), we have

K2(x, t) =

∫ 1

0
K(x, z)K1(z, t) dz =

∫ 1

0
ex+zez+t dz

= ex+t

∫ 1

0
e2z dz = ex+t

[
1

2
e2z
]
= ex+t

(
e2 − 1

2

)
,

Putting n = 3 in Eq.(16.1.9), we have

K3(x, t) =

∫ 1

0
K(x, z)K2(z, t) dz =

∫ 1

0
ex+zez+t

(
e2 − 1

2

)
dz

= ex+t

(
e2 − 1

2

)∫ 1

0
e2z dz = ex+t

[
1

2
e2z
]
= ex+t

(
e2 − 1

2

)2

and so on,

Observing above, we may write

Km(x, t) = ex+t

(
e2 − 1

2

)m−1

, m = 1, 2, 3, . . .

Now, the required resolvent kernel is given by

R(x, t;λ) =

∞∑
m=1

λm−1Km(x, t) =

∞∑
m=1

λm−1ex+t

(
e2 − 1

2

)m−1

= ex+t
∞∑

m=1

{
λ(e2 − 1)

2

}m−1

But
∞∑

m=1

{
λ(e2 − 1)

2

}m−1

= 1 +
λ(e2 − 1)

2
+

{
λ(e2 − 1)

2

}2

+ · · ·
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which is an infinite geometric series with common ratio {λ(e2 − 1)}/2.

∴
∞∑

m=1

{
λ(e2 − 1)

2

}m−1

=
1

1− {λ(e2 − 1)}/2
=

2

2− λ(e2 − 1)
,

provided
∣∣∣∣λ(e2 − 1)

2

∣∣∣∣ < 1 or |λ| < 2

e2 − 1

Therefore R(x, t;λ) =
2ex+t

2− λ(e2 − 1)
, provided |λ| < 2

e2 − 1

16.1.3 Solution in terms of resolvent kernel :

Let the Fredholm integral is given by Eq.(16.1.4). Let Km(x, t) be the m-th iterated kernel and let R(x, t;λ)
be the resolvent kernel of Eq.(16.1.4). Then we have

R(x, t;λ) =
∞∑

m=1

λm−1Km(x, t) (16.1.10)

Suppose the sum of the infinite series (16.1.10) exists and so R(x, t;λ) can be obtained in the closed form.
Then, the required solution of Eq.(16.1.4) is given by

y(x) = f(x) + λ

∫ b

a
R(x, t;λ) f(t) dt (16.1.11)

Example 16.1.3. Solve

y(x) = x+

∫ 1/2

0
y(t) dt

Solution : Comparing the given equation with

y(x) = f(x) + λ

∫ 1/2

0
K(x, t) y(t) dt,

we have f(x) = x, λ = 1, K(x, t) = 1 (16.1.12)

Let Km(x, t) be the m-th iterated kernel. Then, we have

K1(x, t) = K(x, t) (16.1.13)

Km(x, t) =

∫ 1

0
K(x, z)Km−1(z, t) dz (16.1.14)

From (16.1.12), K1(x, t) = K(x, t) = 1.

Putting m = 2 in (16.1.14), we have

K2(x, t) =

∫ 1/2

0
K(x, z)K1(z, t) dz =

∫ 1/2

0
dz = [z]

1/2
0 =

1

2
.

Putting m = 3 in (16.1.14), we have

K3(x, t) =

∫ 1/2

0
K(x, z)K2(z, t) dz =

∫ 1/2

0

1

2
dz =

(
1

2

)2

.
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Observing above we find

Km(x, t) =

(
1

2

)m−1

Now, the resolvent kernel R(x, t;λ) is given by

R(x, t;λ) =

∞∑
m=1

λm−1Km(x, t) =

∞∑
m=1

(
1

2

)m−1

But
∞∑

m=1

(
1

2

)m−1

= 1 +
1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·

which is an infinite geometric series with common ratio 1/2.

∴
∞∑

m=1

(
1

2

)m−1

=
1

1− (1/2)
= 2 and hence R(x, t;λ) = 2

Finally, the required solution of the given equation is given by

y(x) = f(x) + λ

∫ 1/2

0
R(x, t;λ) f(t) dt

⇒ y(x) = x+

∫ 1/2

0
(2t) dt

⇒ y(x) = x+ 2

[
t2

2

]1/2
0

= x+
1

4

Exercise 16.1.4. Solve

i) y(x) = ex − 1

2
e+

1

2
+

1

2

∫ 1

0
y(t) dt ii) y(x) =

5x

6
+

1

2

∫ 1

0
xt y(t) dt

iii) y(x) = sinx− x

4
+

1

4

∫ π/2

0
xt y(t) dt iv) y(x) =

3

2
ex − 1

2
xex − 1

2
+

1

2

∫ 1

0
t y(t) dt

Answers :

i) y(x) = ex, (ii) y(x) = x, (iii) y(x) = sinx, (iv) y(x) =
3ex

2
− xex

2
− e

3
+ 1

16.1.4 Iterative scheme for Fredholm integral equations

When the resolvent kernel cannot be obtained in closed form i.e., the sum of infinite series occurring in the
formula of the resolvent kernel can not be determined, we use the method of successive approximations to
find solutions upto third order.

Let the given Fredholm integral equation of the second kind be

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt

(16.1.15)
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As zero-order approximation, we take y0(x) = f(x). If n-th order approximation be yn(x), then

yn(x) = f(x) + λ

∫ b

a
K(x, t)yn−1(x) (16.1.16)

Sometimes the zero-order approximation is mentioned in the problem. In that case, we will modify the scheme
accordingly.

Example 16.1.5. Solve the following integral equation

y(x) = 1 + λ

∫ 1

0
(x+ t) y(t) dt,

by the method of successive approximation to third order.

Solution : Given

y(x) = 1 + λ

∫ 1

0
(x+ t) y(t) dt (16.1.17)

Let y0(x) denote the zero-order approximation. Then we may take

y0 = 1.

If yn(x) denotes the n-th order approximation, then we know that

yn(x) = 1 + λ

∫ 1

0
(x+ t) yn−1(t) dt, (16.1.18)

Putting n = 1 in (16.1.18),

y1(x) = 1 + λ

∫ 1

0
(x+ t) y0(t) dt = 1 + λ

∫ 1

0
(x+ t) dt,

⇒ y1(x) = 1 + λ

[
xt+

1

2
t2
]1
0

= 1 + λ

(
x+

1

2

)
. (16.1.19)

Next, putting n = 2 in (16.1.18), we have

y2(x) = 1 + λ

∫ 1

0
(x+ t) y1(t) dt = 1 + λ

∫ 1

0
(x+ t)

{
1 + λ

(
t+

1

2

)}
,

= 1 + λ

∫ 1

0
(x+ t)

{(
1 +

λ

2

)
+ λt

}
dt = 1 + λ

∫ 1

0

[
x

(
1 +

λ

2

)
+ t

(
1 +

λ

2
+ λx

)
+ λt2

]
dt

= 1 + λ

[
x

(
1 +

λ

2

)
t+

t2

2

(
1 +

λ

2
+ λx

)
+

λt3

3

]1
0

= 1 + λ

[
x

(
1 +

λ

2

)
t+

1

2

(
1 +

λ

2
+ λx

)
+

λ

3

]
= 1 + λ

(
x+

1

2

)
+ λ2

(
x+

7

12

)
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Finally, putting n = 3 in (16.1.18), we have

y3(x) = 1 + λ

∫ 1

0
(x+ t) y2(t) dt = 1 + λ

∫ 1

0
(x+ t)

{
1 + λ

(
t+

1

2

)
+ λ2

(
t+

7

2

)}
,

= 1 + λ

∫ 1

0
(x+ t)

{(
1 +

λ

2
+

7λ2

12

)
+ λt(1 + λ)

}
dt

= 1 + λ

∫ 1

0

[
x

(
1 +

λ

2
+

7λ2

12

)
+ t

(
1 +

λ

2
+

7λ2

12
+ λx+ λ2x

)
+ λt2(1 + λ)

]
dt

= 1 + λ

[
x

(
1 +

λ

2
+

7λ2

12

)
t+

t2

2

(
1 +

λ

2
+

7λ2

12
+ λx+ λ2x

)
+

λ1

3
λt3(1 + λ)

]1
0

= 1 + λx

(
1 +

λ

2
+

7λ2

12

)
t+

λ

2

(
1 +

λ

2
+

7λ2

12
+ λx+ λ2x

)
+

1

3
λ2(1 + λ)

Therefore, y3(x) = 1 + λ

(
x+

1

2

)
+ λ2

(
x+

7

12

)
+ λ3

(
13

12
x+

5

8

)
Exercise 16.1.6. Exercise : Solve the inhomogeneous Fredholm integral equation of the second kind

y(x) = 2x+ λ

∫ 1

0
(x+ t) y(t) dt,

by the method of successive approximations to the third order by taking y0(x) = 1.

Answers :
y3(x) = 2x+ λ

(
x+

2

3

)
+ λ2

(
7

6
x+

2

3

)
+ λ3

(
13

12
x+

5

8

)

16.1.5 Solution of Homogeneous Fredholm Integral Equation of the second kind with sepa-
rable (or Degenerate) kernel

Consider a homogeneous Fredholm integral equation of the second kind

y(x) = λ

∫ b

a
K(x, t)y(t)dt. (16.1.20)

Since kernel K(x, t) is separable, we take

K(x, t) =
n∑

i=1

fi(x)gi(t). (16.1.21)

Using (16.1.21), (16.1.20) reduces to

y(x) = λ

∫ b

a

[
n∑

i=1

fi(x)gi(t)

]
y(t)dt

or, y(x) = λ

n∑
i=1

fi(x)

∫ b

a
gi(t)y(t)dt [Interchanging the order of summation and integration](16.1.22)

Let ∫ b

a
gi(t)y(t)dt = Ci, where i = 1, 2, . . . , n. (16.1.23)
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Using (16.1.23), (16.1.22) reduces to

y(x) = λ
n∑

i=1

Cifi(x) (16.1.24)

where constants Ci (i = 1, . . . , n) are to be determined in order to find the solution of (16.1.20) in the form
given by (16.1.24).

We now proceed to evaluate Ci’s as follows:
Multiplying both sides of (16.1.24) successively by g1(x), g2(x), . . . , gn(x) and integrating over the inter-

val (a, b), we have the following system∫ b

a
g1(x)y(x)dx = λ

n∑
i=1

Ci

∫ b

a
g1(x)fi(x)dx∫ b

a
g2(x)y(x)dx = λ

n∑
i=1

Ci

∫ b

a
g2(x)fi(x)dx

. . .

. . .∫ b

a
gn(x)y(x)dx = λ

n∑
i=1

Ci

∫ b

a
gn(x)fi(x)dx.

Let

αji =

∫ b

a
gj(x)fi(x)dx, where i, j = 1, . . . , n. (16.1.25)

Using (16.1.23) and (16.1.25), the first equation of the above system reduces to

C1 = λ
n∑

i=1

Ciα1i

or, C1 = λ[C1α11 + C2α12 + · · ·+ Cnα1n]

or, (1− λα11)C1 − λα12C2 − · · · − λα1nCn = 0.

Similarly, simplifying the other equations, we finally obtain the following system of homogeneous linear
equations to determine C1, C2, . . . , Cn.

(1− λα11)C1 − λα12C2 − · · · − λα1nCn = 0

−λα21C1 + (1− λα22)C2 − · · · − λα2nCn = 0

· · ·
· · ·

−λαn1C1 − λαn2C2 − · · ·+ (1− λαnn)Cn = 0.

The determinant D(λ) of this system is

D(λ) =

∣∣∣∣∣∣∣∣∣∣
1− λα11 −λα12 . . . −λα1n

−λα21 1− λα22 . . . −λα2n

. . .

. . .
−λαn1 −λαn2 . . . 1− λαnn

∣∣∣∣∣∣∣∣∣∣
. (16.1.26)

If D(λ) ̸= 0, the system of equations for Ci’s have only trivial solution C1 = C2 = . . . = Cn = 0 and hence
from (16.1.24), we notice that equation (16.1.20) has only zero or trivial solution y(x) = 0.
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However, if D(λ) = 0, at least one of the Ci’s can be assigned arbitrarily , and the remaining Ci’s can be
determined accordingly. Hence, when D(λ) = 0, infinitely many solutions of the equation (16.1.20) exist.

Those values of λ for which D(λ) = 0 are called the eigen values, and any non-trivial solution of (16.1.20)
is called a corresponding eigen function of (16.1.20).

The eigen values of (16.1.20) are gievn by D(λ) = 0, that is,∣∣∣∣∣∣∣∣∣∣
1− λα11 −λα12 . . . −λα1n

−λα21 1− λα22 . . . −λα2n

. . .

. . .
−λαn1 −λαn2 . . . 1− λαnn

∣∣∣∣∣∣∣∣∣∣
= 0 (16.1.27)

So the degree of (16.1.27) in λ is m ≤ n. It follows that if integral equation (16.1.20) has separable kernel
given by (16.1.21) , then (16.1.20) has at most n eigen values.

Example 16.1.7. Solve the homogeneous Fredholm equation

y(x) = λ

∫ 1

0
ex et y(t)dt.

OR

Find the eigen values and eigen functions of the homogeneous integral equation

y(x) = λ

∫ 1

0
ex et y(t)dt.

Solution. Given

y(x) = λ

∫ 1

0
ex et y(t)dt

or, y(x) = λ ex
∫ 1

0
et y(t)dt. (16.1.28)

Let

C =

∫ 1

0
et y(t)dt. (16.1.29)

Then (16.1.28) reduces to
y(x) = λC ex . (16.1.30)

From (16.1.30),
y(t) = λC et . (16.1.31)

Using (16.1.31), (16.1.29) becomes

C =

∫ 1

0
et
(
λC et

)
dt

or, C = λC

[
e2t

2

]1
0

or, C =
λC

2
(e2−1)

or, C

[
1− λ

2
(e2−1)

]
= 0. (16.1.32)
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If C = 0, then (16.1.31) gives y(x) = 0. We therefore assume that for non-zero solution of (16.1.28), C ̸= 0.
Then (16.1.32) gives

1− λ

2
(e2 − 1) = 0

or, λ =
2

e2−1
, (16.1.33)

which is an eigen value of (16.1.28).
Putting the values of λ given by (16.1.33) in (16.1.30), the corresponding eigen function is given by

y(x) =
2C

e2 − 1
ex .

Hence, corresponding to the eigen value 2
e2 −1

, the eigen function is ex. ■

Example 16.1.8. Find the eigen values and the corresponding eigen functions of the homogeneous integral
equation

y(x) = λ

∫ 1

0
sinπx cosπty(t)dt.

Solution. Given

y(x) = λ

∫ 1

0
sinπx cosπty(t)dt

or, y(x) = λ sinπx

∫ 1

0
cosπty(t)dt. (16.1.34)

Let

C =

∫ 1

0
cosπty(t)dt. (16.1.35)

Then (16.1.34) reduces to
y(x) = Cλ sinπx. (16.1.36)

From (16.1.36)
y(t) = Cλ sinπt. (16.1.37)

Using (16.1.37), (16.1.35) becomes

C =

∫ 1

0
cosπt(λC sinπt)dt

or, C =
λC

2

∫ 1

0
sin 2πtdt

or, C =
λC

2

[
− 1

2π
+

1

2π

]
= 0.

So from (16.1.36), y(x) = 0. Thus for any λ, (16.1.34) has only zero solution y(x) = 0. Therefore, (16.1.34)
does not possess any characteristic number or eigen function. ■

Exercise 16.1.9. 1. Find the eigen values and eigen functions of the integral equation

y(x) = λ

∫ 1

0
(2xt− 4x2)y(t)dt.

ANS: λ1 = −3, λ2 = −3, y(x) = (x− 2x2).
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2. Find the eigen values and eigen functions of the homogeneous integral equation

y(x) =

∫ 1

−1
(5xt3 + 4x2t+ 3xt)y(t)dt.

ANS: λ =
1

4
, y(x) = x2 +

3

2
x.

3. Solve:

y(x) =
1

50

∫ 10

0
ty(t)dt.

ANS: y(x) = 0.

16.1.6 Some Problems on Fredholm Integral Equation of the Second kind with separable
kernels

Example 16.1.10. Find the solution of the integral equation

g(s) = s+

∫ 1

0
su2g(u)du.

Solution. Given

g(s) = s+ s

∫ 1

0
u2g(u)du. (16.1.38)

Let

C =

∫ 1

0
u2g(u)du. (16.1.39)

Using (16.1.39), (16.1.38) yields
g(s) = s+ Cs = s(1 + C). (16.1.40)

From (16.1.40),
g(u) = u(1 + C). (16.1.41)

Using (16.1.41), (16.1.39) yields

C =

∫ 1

0
u3(1 + C)du

or, C =
1

3
.

Hence,

g(s) = s

(
1 +

1

3

)
=

4s

3

and so g(t) =
4t

3
. ■

Example 16.1.11. Solve

y(x) = cosx+ λ

∫ π

0
sinxy(t)dt.
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Solution. Given

y(x) = cosx+ λ

∫ π

)
sinxy(t)dt

or, y(x) = cosx+ λ sinx

∫ π

)
y(t)dt. (16.1.42)

Let

C =

∫ π

0
y(t)dt. (16.1.43)

Using (16.1.43), (16.1.42) becomes
y(x) = cosx+ λC sinx. (16.1.44)

From (16.1.44),
y(t) = cos t+ λC sin t. (16.1.45)

Using (16.1.45), (16.1.43) reduces to

C =

∫ π

0
(cos t+ λC sin t)dt

or, = [sin t]π0 + λC[− cos t]π0

or, C(1− 2λ) = 0.

So that C = 0 if λ ̸= 1/2. Hence, by (16.1.44), the required solution is

y(x) = cosx,

provided λ ̸= 1/2. ■

Example 16.1.12. Solve

y(x) = f(x) + λ

∫ 1

0
xty(t)dt.

Solution. Given,

y(x) = f(x) + λ

∫ 1

0
xty(t)dt

or, y(x) = f(x) + λx

∫ 1

0
ty(t)dt. (16.1.46)

Let

C =

∫ 1

0
ty(t)dt. (16.1.47)

Then (16.1.46) reduces to
y(x) = f(x) + λCx. (16.1.48)

From (16.1.48),
y(t) = f(t) + λCt. (16.1.49)
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Using (16.1.49), (16.1.46) reduces to

C =

∫ 1

0
t[f(t) + λCt]dt

or, C =

∫ 1

0
tf(t)dt+ λC

[
t3

3

]1
0

or, C =

∫ 1

0
tf(t)dt+

λC

3

or, C

(
1− λ

3

)
=

∫ 1

0
tf(t)dt

or, C =
3

3− λ

∫ 1

0
tf(t)dt

where λ ̸= 3. Putting this value of C in (16.1.48), the required solution is

y(x) = f(x) +
3λx

3− λ

∫ 1

0
tf(t)dt

where λ ̸= 3. ■

Exercise 16.1.13. Solve the following integral equations:

1. y(x) = tanx+

∫ 1

−1
esin

−1 x y(t)dt;

2. y(x) = sec2 x+ λ

∫ 1

0
y(t)dt;

3. y(x) =
1√

1− x2
+ λ

∫ 1

0
cos−1 ty(t)dt;

4. y(x) = ex+λ

∫ 1

0
2 ex et y(t)dt.

16.2 Solution of Volterra integral equations

16.2.1 Solution of Volterra integral equation in terms of resolvent kernel

Working Rule : Let

y(x) = f(x) + λ

∫ x

a
K(x, t) y(t) dt (16.2.1)

be given Volterra integral equation. Let Km(x, t) be the m-th iterated kernel and let R(x, t;λ) be the resolvent
kernel of (16.2.1). Then we have

R(x, t;λ) =
∞∑

m=1

λm−1Km(x, t). (16.2.2)

Suppose the sum of infinite series (16.2.2) exists and so R(x, t;λ) can be obtained in the closed form. Then
the required solution of (16.2.1) is given by

y(x) = f(x) + λ

∫ x

a
R(x, t;λ) f(t) dt. (16.2.3)
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Example 16.2.1. With the aid of the resolvent kernel, find the solution of the integral equation

y(x) = ex
2
+

∫ x

0
ex

2−t2y(t) dt.

Solution : Comparing the given equation with

y(x) = f(x) + λ

∫ x

0
K(x, t) y(t) dt

we have
f(x) = ex

2
, λ = 1, K(x, t) = ex

2−t2

Let Km(x, t) be the m-th iterated kernel. Then we have

K1(x, t) = K(x, t)

and Km(x, t) =

∫ x

t
K(x, z)Km−1(z, t) dz (16.2.4)

Thus we have
K1(x, t) = K(x, t) = ex

2−t2 (16.2.5)

Putting m = 2 in (16.2.4), we have

K2(x, t) =

∫ x

t
K(x, z)K1(z, t) dz =

∫ x

t
ex

2−z2ez
2−t2dz = ex

2−t2
∫ x

t
dz = ex

2−t2(x− t)

Putting m = 3 in (16.2.4), we have

K3(x, t) =

∫ x

t
K(x, z)K2(z, t) dz =

∫ x

t
ex

2−z2ez
2−t2(z − t) dz = ex

2−t2
∫ x

t
(z − t) dz

= ex
2−t2

[
(z − t)2

2

]x
t

= ex
2−t2 (x− t)2

2!

Putting m = 4 in (16.2.4), we have

K4(x, t) =

∫ x

t
K(x, z)K3(z, t) dz =

∫ x

t
ex

2−z2ez
2−t2 (z − t)2

2!
dz

=
ex

2−t2

2!

[
(z − t)3

3

]x
t

= ex
2−t2 (x− t)3

3!

Observing above by mathematical induction we may write

Km(x, t) = ex
2−t2 (x− t)m−1

(m− 1)!
, m = 1, 2, 3, . . . (16.2.6)

Now, by the definition of the resolvent kernel, we have

R(x, t;λ) =

∞∑
m=1

Km(x, t) = K1(x, t) + λK2(x, t) + λ2K3(x, t) + · · ·

= ex
2−t2 + ex

2−t2 (x− t)

1!
+ ex

2−t2 (x− t)2

2!
+ · · ·

= ex
2−t2

[
1 +

(x− t)

1!
+

(x− t)2

2!
+ · · ·

]
= ex

2−t2ex−t
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Finally, the required solution of the given equation is given by

y(x) = f(x) + λ

∫ x

0
R(x, t;λ) f(t) dt = ex

2
+

∫ x

0
ex

2−t2ex−tet
2
dt

= ex
2
+ ex

2+x

∫ x

0
e−t dt = ex

2
+ ex

2+x
[
− e−t

]x
0

= ex
2
+ ex

2+x[−e−x + 1] = ex
2 − ex

2
+ ex

2+x = ex
2+x

Exercise 16.2.2. Solve the following integral equation by means of resolvent kernel

i) y(x) = ex sinx+

∫ x

0

2 + cosx

2 + cos t
y(t) dt ii) y(x) = cosx− x− 2 +

∫ x

0
(t− x) y(t) dt

Answers :

i) y(x) = ex sinx− ex(2 + cosx) log

(
2 + cosx

3

)
, (ii) y(x) = − cosx− sinx− x

2
sinx

16.2.2 Method of Successive approximations for solving Volterra integral equation

Working Rule : Let f(x) be continuous in [0, a] and K(x, t) be continuous for 0 ≤ x ≤ a, 0 ≤ t ≤ x. We
start with some function y0(x) continuous in [0, a]. Replacing y(t) on R.H.S of (14.9.1) by y0(x), we obtain

y1(x) = f(x) + λ

∫ x

0
K(x, t) y0(t) dt. (16.2.7)

y1(x) given by (16.2.7) is itself continuous in [0, a]. Proceeding likewise we arrive at a sequence of functions
y0(x), y1(x), . . . , yn(x), . . . , where

yn(x) = f(x) + λ

∫ x

0
K(x, t) yn−1(t) dt. (16.2.8)

In view of continuity of f(x) and K(x, t), the sequence {yn(x)} converges, as n → ∞ to obtain the solution
of y(x) of given integral equation (14.9.1). It should be note that when y0(x) = f(x), we obtain the so called
Neumann series.

Example 16.2.3. Using the method of successive approximations, solve the integral equation

y(x) = 1 +

∫ x

0
y(t) dt, taking y0(x) = 0.

Solution : Comparing the given equation with

y(x) = f(x) + λ

∫ x

0
K(x, t) y(t) dt,

we find
f(x) = 1, λ = 1, K(x, t) = 1

The n-th order approximation is given by

yn(x) = 1 +

∫ x

0
yn−1(t) dt, (16.2.9)
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Putting n = 1 in (16.2.9), we have

y1(x) = 1 +

∫ x

0
y0(t) dt = 1 +

∫ x

0
(0) dt = 1.

Putting n = 2 in (16.2.9), we have

y2(x) = 1 +

∫ x

0
y1(t) dt = 1 +

∫ x

0
dt = 1 +

[
t
]x
0
= 1 + x.

Putting n = 3 in (16.2.9), we have

y3(x) = 1 +

∫ x

0
y2(t) dt = 1 +

∫ x

0
(1 + t) dt = 1 +

[
t+

t2

2

]x
0

= 1 + x+
x2

2!
.

Putting n = 4 in (16.2.9), we have

y4(x) = 1 +

∫ x

0
y3(t) dt = 1 +

∫ x

0

(
1 + t+

t2

2!

)
dt = 1 + x+

x2

2!
+

x3

3!
.

Observing the above trend, we find

yn(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·+ xn−1

(n− 1)!

Making n → ∞, we find the required solution is given by

y(x) = lim
n→∞

yn(x)

= 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · · · · = ex

Exercise 16.2.4. Using the method of successive approximations, solve the integral following integral equa-
tions.

i) y(x) = 1 + x−
∫ x

0
y(t) dt, taking y0(x) = 1 ii) y(x) = x−

∫ x

0
(x− t) y(t) dt, taking y0(x) = 0

iii) y(x) = 1 +

∫ x

0
(x− t) y(t) dt, taking y0(x) = 1 iv) y(x) =

1

2
x3 − 2x−

∫ x

0
y(t) dt, taking y0(x) = x2

Answers :

i) y(x) = 1, (ii) y(x) = sinx, (ii) y(x) = coshx, (iv) y(x) = x2 − 2x
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Unit 17

Course Structure

• Hilbert-Schmidt theory: Orthonormal system of function, fundamental properties of eigen value and
function for symmetric kernel, Hilbert theorem, Hilbert-Schmidt theorem.

17.1 Hilbert-Schmidt Theory

17.1.1 Symmetric Kernels

A kernel is called symmetric if it coincides with its own complex conjugate. Such a kernel is characterized by
the identity

K(x, t) = K(t, x),

where the bar denotes the complex conjugate. If the kernel is real, then its symmetry is defined by the identity
K(x, t) = K(t, x). An integral equation with a symmetric kernel is called a symmetric equation.

Remark 17.1.1. For a symmetric kernel that is not identically zero, at least one eigenvalue will always exist.
This is an important characteristic of symmetric kernel. An eigenvalue is simple if there is only one corre-
sponding eigenfunction, otherwise the eigenvalues are degenerate. The spectrum of the kernel K(x, t) is the
set of all its eigenvalues. Thus the spectrum of a symmetric kernel is never empty.

17.1.2 Orthogonal system of functions

A finite or an infinite set {ϕk(x)} defined on an interval a ≤ n ≤ b is said to be an orthogonal set if

(ϕi, ϕj) = 0 or
∫ b

a
ϕi(x)ϕj(x) = 0, i ̸= j. (17.1.1)

If none of the elements of this set is a zero vector, then it is called a proper orthogonal set. The set {ϕi(x)} is
orthonormal if

(ϕi, ϕj) =

∫ b

a
ϕi(x)ϕj(x) dx =

{
0, i ̸= j,
1, i = j.

(17.1.2)
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Any function ϕ(x) for which ||ϕ(x)|| = 1 is said to be normalized.

Some examples of the complete orthogonal and orthonormal systems.

(i) The system ϕn(x) = (2π)−1/2einx, where n takes every integer value from −∞ to ∞, is orthonormal
in the interval (−π, π).

(ii) The functions 1, cosx, cos 2x, cos 3x, . . . form an orthogonal system in the interval (0, π). Again
the functions sinx, sin 2x, sin 3x, . . . also form an orthogonal system in (0, π).

(iii) The Legendre polynomials given by

P0(x) = 1, Pn(x) =
1

2nn!

dn(x2 − 1)n)

dxn
, n = 1, 2, 3, . . .

are orthogonal in the interval (−1, 1). It can be shown that∫ 1

−1
Pm(x)Pn(x) dx =

{
0, if m ̸= n,
2/(2n+ 1), if m = n.

(iv) The Chebychev polynomials Tn(x) = 21−n cos(n cos−1 x), n = 0, 1, 2, 3, . . . are orthogonal with
weight r(x) = 1/(1 − x2)1/2 in the interval (−1, 1). They can be normalized by multiplying Tn(x) by the
quality (22n−1/π)1/2.

17.1.3 Fundamental properties of eigenvalues and eigenfunctions of symmetric kernels

Theorem 17.1.2. If a kernel is symmetric then all its iterated kernels are also symmetric.

Proof. Let kernel K(x, t) be symmetric. Then by definition

K(x, t) = K(t, x). (17.1.3)

By definition, the iterated kernels Kn(x, t), n = 1, 2, 3, . . . are defined as follows:

K1(x, t) = K(x, t) (17.1.4)

Kn(x, t) =

∫ b

a
K(x, z)Kn−1(z, t) dz, n = 2, 3, . . . (17.1.5)

and Kn(x, t) =

∫ b

a
Kn−1(x, z)K(z, t) dz, n = 2, 3, . . . (17.1.6)

We shall use mathematical induction to prove the required result. Now

K2(x, t) =

∫ b

a
K(x, z)K1(z, t) dz =

∫ b

a
K(x, z)K(z, t) dz

=

∫ b

a
K(z, x)K1(t, z) dz =

∫ b

a
K(t, z)K1(z, x) dz = K2(t, x)

Thus,
K2(x, t) = K2(t, x) (17.1.7)

showing that K2(x, t) is symmetric. Hence the required result is true for n = 1 and n = 2.
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17.1. HILBERT-SCHMIDT THEORY

Let Kn(x, t) be symmetric for n = m. Then by definition, we have

Km(x, t) = Km(t, x). (17.1.8)

We shall now prove that Kn(x, t) is also symmetric for n = m+ 1, i.e.,

Km+1(x, t) = Km+1(t, x). (17.1.9)

L.H.S of (17.1.9) = Km+1(x, t) =

∫ b

a
K(x, z)Km(z, t) dz =

∫ b

a
K(z, x)Km(t, z) dz

=

∫ b

a
Km(t, z)K(z, x) dz = Km+1(t, x) = R.H.S of (17.1.9)

Thus iterated Kernel Kn(x, t) is symmetric for n = 1 and n = 2. Moreover, Kn(x, t) is symmetric for
n = m+1 whenever it is symmetric for n = m. Hence, by the mathematical induction, Kn(x, t) is symmetric
for n = 1, 2, 3, . . ..

Theorem 17.1.3. Hilbert Theorem

Every symmetric kernel with a norm not equal to zero has at least one eigenvalue.
OR, If the kernel K(x, t) is symmetrical and not identically equal to zero, then it has at least one eigenvalue.

Theorem 17.1.4. The eigenvalues of a symmetric kernel are real. OR, If K(x,t) is real, symmetric, continuous
and identically not equal to zero, then all the characteristic constants (eigenvalues) are real.

Proof. Let λ an ϕ(x) be an eigenvalue and a corresponding eigenfunction of the kernel K(x, t). Then by
definition

ϕ(x) = λ

∫ b

a
K(x, t)ϕ(t) dt (17.1.10)

Multiplying (17.1.10) by ϕ(x) and integrating with respect x from to x from a to b.∫ b

a
ϕ(x)ϕ(x) dx = λ

∫ b

a

{∫ b

a
K(x, t)ϕ(t) dt

}
ϕ(x) dx (17.1.11)

By definition of Fredholm operator K, we have

Kϕ =

∫ b

a
K(x, t)ϕ(t) dt (17.1.12)

Also, ||ϕ(x)|| =
∫ b

a

{
ϕ(x)ϕ(x) dx

}1/2
(17.1.13)

Using (17.1.12) and (17.1.13) and the definition of inner product, (17.1.11) reduces to

||ϕ(x)||2 = λ(Kϕ, ϕ) so that λ = ||ϕ(x)||2/(Kϕ, ϕ)

Since bothe the numerator and denominator are real, it follows that λ is also real and thus the required result
is proved.
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Theorem 17.1.5. The eigenfunctions of a symmetric kernel, corresponding to different eigenvalues are or-
thogonal. OR The fundamental functions (i.e. eigenfunctions) ϕm(x) and ϕn(x) of the symmetric kernel
K(x, t) for corresponding eigenvalues λm and λn (λm ̸= λn) are orthogonal in the domain (a, b).

Proof. Since ϕm(x) and ϕn(x) are eigenfunctions corresponding to eigenvalues λm and λn respectively,
where λm ̸= λn. Then, by definition, we have

ϕm(x) = λm

∫ b

a
K(x, t)ϕm(t) dt (17.1.14)

and ϕn(x) = λn

∫ b

a
K(x, t)ϕn(t) dt (17.1.15)

Since λn is real, (17.1.15) may be re-written as ϕ(x) = λn

∫ b

a
K(x, t)ϕn(t) dt (17.1.16)

Since K(x, t) is symmetric, we have K(x, t) = K(x, t) (17.1.17)

Using (17.1.17), (17.1.16) may be re-written as ϕ(x) = λn

∫ b

a
K(t, x)ϕn(t) dt (17.1.18)

Interchanging x and t in (17.1.18), wehave ϕn(t) = λn

∫ b

a
K(x, t)ϕn(x) dx (17.1.19)

Multiplying both sides of (17.1.14) by ϕn(x) and then integrating the both sides w.r.t. ‘x’ from a to b, we have

∫ b

a
ϕm(x)ϕn(x) dx = λm

∫ b

a

{∫ b

a
K(x, t)ϕm(t) dt

}
ϕn(x) dx

= λm

∫ b

a

{∫ b

a
K(x, t)ϕn(x) dx

}
ϕm(t) dt [on changing the order of integration]

= (λm/λn)

∫ b

a
ϕm(t)ϕn(t) dt, by Eq.(17.1.19)

∴
∫ b

a
ϕm(x)ϕn(x) dx = λm

∫ b

a
ϕm(x)ϕn(x) dx

⇒ (λn − λm)

∫ b

a
ϕm(x)ϕn(x) dx = 0,

⇒ (λn − λm)(ϕm, ϕn) = 0

Since λn ̸= λm, (λn − λm) ̸= 0 and so we have (ϕm, ϕn) = 0, showing that the eigenfunctions ϕm and ϕn

are orthogonal.
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17.1.4 Hilbert-Schmidt Theorem

Theorem 17.1.6. Let F (x) be generated from a continuous function y(x) y the operator

λ

∫ b

a
K(x, t) y(t) dt

where K(x, t) is continuous, real and symmetric, so that

F (x) = λ

∫ b

a
K(x, t) y(t) dt.

Then F (x) can be represented over interval (a, b) by a linear combination of the normalized eigenfunctions
of homogeneous integral equation

y(x) = λ

∫ b

a
K(x, t) y(t) dt,

having K(x, t) as its kernel.

Result 17.1.7. Schmidt’s Solution of non-homogeneous fredholm integral equation of second kind

Let

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt (17.1.20)

be a non-homogeneous Fredholm integral equation of the second kind in which K(x, t) is continuous, real
and symmetric and λ is not an eigenvalue. Then the solution of Eq.(17.1.20) may be expressed as

y(x) = f(x) + λ
∑
m

fm
λm − λ

ϕm(x) (17.1.21)

where fm =
∫ b
a f(t)ϕm(t) dt. Solution exists uniquely if and only if λ does not take on an eigenvalue. If

λ = λk, where λk is the k-th eigenvalue and eigenfunction ϕk(x) is not orthogonal to f(x), then no solution
exists. Finally, if λ = λk and eigenfunction ϕk(x) is orthogonal to f(x), then we have infinitely many
solutions of Eq.(17.1.20).

Example 17.1.8. Solve the symmetric integral equation

y(x) = (x+ 1)2 +

∫ 1

−1
(xt+ x2t2)y(t) dt,

by using Hilbert-Schmidt theorem.

Solution:

Given y(x) = (x+ 1)2 +

∫ 1

−1
(xt+ x2t2)y(t) dt, (17.1.22)

Comparing (17.1.22) with y(x) = f(x) + λ

∫ 1

−1
(xt+ x2t2)y(t) dt, (17.1.23)

here f(x) = (x+ 1)2 and λ = 1 (17.1.24)
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We begin with determining eigenvalues and the corresponding normalized eigenfunctions of

y(x) = λ

∫ 1

−1
(xt+ x2t2)y(t) dt (17.1.25)

⇒ y(x) = λx

∫ 1

−1
ty(t) dt+ λx2

∫ 1

−1
t2y(t) dt.

Let C1 =

∫ 1

−1
ty(t) dt and C2 =

∫ 1

−1
t2y(t) dt

Thus we have from Eq.(17.1.25)

y(x) = λC1x+ λC2x
2 ⇒ y(t) = λC1t+ λC2t

2 (17.1.26)

Hence C1 =

∫ 1

−1
t(λC1 + λC2t

2) dt ⇒ C1 = C1λ

[
t3

3

]1
−1

+ C2λ

[
t4

4

]1
−1

⇒ C1 =
2C1λ

3
+ 0 ⇒ C1

(
1− 2λ

3

)
+ 0.C2 = 0. (17.1.27)

Again C2 =

∫ 1

−1
t2(λC1 + λC2t

2) dt ⇒ C2 = C1λ

[
t4

4

]1
−1

+ C2λ

[
t5

5

]1
−1

⇒ C2 = 0 +
2C2λ

5
⇒ 0.C1 +

(
1− 2λ

5

)
C2 = 0. (17.1.28)

Equations (17.1.27) and (17.1.28) have a nontrivial solution only if

D(λ) =

∣∣∣∣1− (2λ/3) 0
0 1− (2λ/5)

∣∣∣∣ = 0

⇒ {1− (2λ/3)}{1− (2λ/5)} = 0 giving λ = 3/2 and λ = 5/2

Hence the required eigenvalues are λ1 = 3/2 and λ2 = 5/2.

Determination of eigenfunction corresponding to λ1 = 3/2

Putting λ = λ1 = 3/2 in (17.1.27) and (17.1.28), we obtain

C1 · 0 + 0 · C2 = 0 and 0 · C1 +

[
1−

(
2

5
× 3

2

)]
C2 = 0

Hence C2 = 0 and C1 is arbitrary. Putting these values in (17.1.26) and noting that λ = 3/2, we have the
required eigenfunction y1(x) is given by

y(x) = (3/2)× C1x

Setting (3/2)× C1 = 1, we may take y1(x) = x. Now, the corresponding normalized eigenfunction ϕ1(x) is
given by

ϕ1(x) =
y1(x)[∫ 1

−1{y1(x)}2
]1/2 =

x[∫ 1
−1 x

2dx
]1/2 =

x{
[x3/3]1−1

}2 =
x√
(2/3)

= x×
(
3

2

)1/2

=
x
√
6

2
.
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Determination of eigenfunction corresponding to λ1 = 5/2

Putting λ = λ1 = 5/2 in (17.1.27) and (17.1.28), we obtain[
1−

(
2

3
× 5

2

)]
C1 + 0 · C2 = 0 and 0 · C1 + 0 · C2 = 0

Hence C1 = 0 and C2 is arbitrary. Putting these values in (17.1.26) and noting that λ = 5/2, we have the
required eigenfunction y2(x) is given by

y(x) = (5/2)× C2x
2

Setting (5/2) × C2 = 1, we may take y2(x) = x2. Now, the corresponding normalized eigenfunction ϕ2(x)
is given by

ϕ2(x) =
y2(x)[∫ 1

−1{y2(x)}2
]1/2 =

x2[∫ 1
−1 x

4dx
]1/2 =

√
10

2
x2.

Also,

f1 =

∫ 1

−1
f(x)ϕ1(x) dx =

∫ 1

−1
(x+ 1)2

(√
6

2
x

)
dx

=

√
6

2

∫ 1

−1
(x2 + 2x+ 1)x dx =

2
√
6

3

f2 =

∫ 1

−1
f(x)ϕ2(x) dx =

∫ 1

−1
(x+ 1)2

(√
10

2
x2

)
dx =

8

15

√
10

(17.1.29)

Now we have λ = 1. Also λ1 = 3/2 and λ2 = 5/2. Hence λ ̸= λ1 and λ ̸= λ2. Therefore the unique solution
given by

y(x) = f(x) + λ
2∑

m=1

fm
λm − λ

ϕm(x)

⇒ y(x) = (x+ 1)2 +
f1ϕ1(x)

λ1 − 1
+

f2ϕ2(x)

λ2 − 1

⇒ y(x) = (x+ 1)2 +
(2
√
6/3)× (x

√
6/2)

(3/2)− 1
+ +

(8
√
10/15)× (x2

√
10/2)

(5/2)− 1

⇒ y(x) = (x+ 1)2 + 4x+ (16/9)× x2 = x2 + 2x+ 1 + 4x+ (16/9)× x2

⇒ y(x) =
25

9
x2 + 6x+ 1.

Exercise 17.1.9. Using Hilbert-Schmidt theorem, find the solution of the symmetric integral equation

i) y(x) = x2 + 1 +
3

2

∫ 1

−1
(xt+ x2t2) y(t) dt, ii) y(x) = 1 +

∫ π

0
cos(x+ t) y(t) dt,

Answers :

i) y(x) = 5x2 + Cx+ 1, where C is constant (ii) y(x) = 1 + C cosx− (2/π) sinx,
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Unit 18

Course Structure

• Integral Transform: Laplace transforms of elementary functions & their derivatives and Dirac-delta
function, Laplace integral, Lerch’s theorem (statement only), property of differentiation, integration
and convolution, inverse transform, application to the solution of ordinary differential equation, integral
equation and BVP.

18.1 Introduction

The integral transform methods are very convenient in solving integral equations of some special forms.
Suppose that a relationship of the form

y(x) =

∫ b

a

∫ b

a
Γ[x, z]K(z, t)y(t) dt dz (18.1.1)

be known to be valid and that this double integral can be evaluated as an iterated integral. Then from (18.1.1),
it follows that if

F (x) =

∫ b

a
K(x, t) y(t) dt (18.1.2)

we also have

y(x) =

∫ b

a
Γ(x, t) F (t) dt. (18.1.3)

Thus, if Eq.(18.1.2) is an integral equation in y, a solution is given by Eq., whereas if Eq.(18.1) is regarded as
an integral equation in F a solution is given by Eq.(18.1.2). It is conventional to refer to one of the function
as the transform of the second function, and to the second function as an inverse transform of the first.

Definition 18.1.1. Function of exponential order: A function f(x) is said to be of exponential order a as
x → ∞ if

lim
x→∞

e−axf(x) = finite quantity

i.e., if given a positive integer n0, there exists a real number M > 0 s.t.

|e−axf(x)| < M ∀x ≥ n0 or |f(x)| < Meax ∀x ≥ n0
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Example 18.1.2. Show that xn is of exponential order as x → ∞, n being any positive integer.

Solution:
lim
x→∞

e−axxn = lim
x→∞

xn

eax
= lim

x→∞

n!

aneax
=

n!

∞
= 0

Example 18.1.3. Show that F (t) = et
2

is not of exponential order as t → ∞.

Solution:
lim
t→∞

e−atF (t) = lim
t→∞

et(t−a) = ∞

Hence F (t) is not of exponential order.

Definition 18.1.4. Laplace transform: Suppose F (t) is a real valued function defined over the interval
(−∞,∞) such that F (t) = 0. The Laplace transform of F (t), denoted by L{F (t)}, is defined as

L{F (t)} = f(s) =

∫ ∞

0
e−stF (t) dt (18.1.4)

Sometimes we use symbol p for the parameter s. The Laplace transform is said to exist if the integral (18.1.4)
is convergent for some value of s.

Table of Laplace transform of some elementary functions
Serial Number F(t) L{F(t)} or F (p) or f(p)

1 1 1/p, p > 0
2 tn, n > −1 Γ(n+ 1)/pn+1, p > 0
3 tn (n is positive integer) n!/pn+1, p > 0
4 eat 1/(p− a), p > a
5 sin at a/(p2 + a2), p > 0
6 cos at p/(p2 + a2), p > 0
7 sinh at a/(p2 − a2), p > |a|
8 cosh at p/(p2 − a2), p > |a|

Theorem 18.1.5. Linear Property: Suppose f1(s) and f2(s) are Laplace forms of F1(t) and F2(t) respec-
tively. Then

L{c1F1(t) + c2F2(t)} = c1L{F1(t)}+ c2L{F2(t)}

where c1 and c2 are constants.

Proof. Let

L{F1(t)} = f1(s) =

∫ ∞

0
e−stF1(t) dt and L{F2(t)} = f2(s) =

∫ ∞

0
e−stF2(t) dt

Also let c1 and c2 be arbitrary constants. Now

L{c1F1(t) + c2F2(t)} =

∫ ∞

0
e−st

[
c1F1(t) + c2F2(t)

]
dt

= c1

∫ ∞

0
e−stF1(t) dt + c2

∫ ∞

0
e−stF2(t) dt

= c1L{f1(t)}+ c2L{f2(t)}
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Theorem 18.1.6. First Shifting Theorem (First Translation): If L{F (t)} = f(s), then L{eatF (t)} =
f(s− a).

Proof. We know that

L{eatF (t)} =

∫ ∞

0
e−steatF (t) dt =

∫ ∞

0
e−(s−a)tF (t) dt =

∫ ∞

0
e−utF (t) dt, where u = s− a > 0

= f(u) = f(s− a)

Example 18.1.7. Find L{e−t(3 sinh 2t− 5 cosh 2t)}

Solution: We know that

L{sinh 2t} =
2

s2 − 22
, L{cosh 2t} =

s

s2 − 22

Therefore

L{e−t(3 sinh 2t− 5 cosh 2t)} = 3
2

(s+ 1)2 − 22
− 5

s+ 1

(s+ 1)2 − 22
=

1− 5s

s2 + 2s− 3

Theorem 18.1.8. Second Shifting Theorem (Second Translation)

If L{F (t)} = f(s) and G(t) =

{
F (t− a) t > a
0 t < a

Then L{G(t)} = e−asf(s)

Proof.

Let L{F (t)} = f(s) and G(t) =

{
F (t− a) t > a
0 t < a

Now

L{G(t)} =

∫ ∞

0
e−stG(t) dt =

∫ a

0
e−stG(t) dt+

∫ ∞

a
e−stG(t) dt

=

∫ a

0
e−st · 0 dt+

∫ ∞

0
e−stF (t− a) dt = 0 +

∫ ∞

a
e−stF (t− a) dt

Now putting t − a = p so that dt = dp. If t = a, then p = t − a = a − a = 0 and if t = ∞, then
p = ∞− a = ∞.

∴ L{G(t)} =

∫ ∞

0
e−s(p+a)F (p) dp = e−sa

∫ ∞

0
e−spF (p) dp = e−saf(s)

Example 18.1.9. Find the Laplace transform of F (t), where F (t) =

{
cos
(
t− 2π

3

)
if t > 2π

3
0 if t > 2π

3

Solution: Let a = 2π
3 , and G(t) = cos t, then

L{G(t)} =
p

p2 + 1
= g(p), as L{cos at} =

p

p2 + a2
. Also F (t) =

{
G(t− a) t > a
0 t < a

By second shifting theorem,
L{F (t)} = e−apg(p) = e−

2πp
3

p

p2 + 1
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Theorem 18.1.10. Change of Scale Property

If L{F (t)} = f(s), then L{F (at)} =
1

a
f
(s
a

)
Proof.

Let L{F (t)} = f(s), then L{F (at)} =

∫ ∞

0
e−stF (at) dt =

∫ ∞

0
e−

sx
a F (x)

dx

a
, Putting x = at

=
1

a

∫ ∞

0
e−

sx
a F (x) dx =

1

a

∫ ∞

0
e−

st
a F (t) dt

=
1

a

∫ ∞

0
e−ptF (t) dt, where p =

s

a
=

1

a
f(p) =

1

a
f
(s
a

)

Example 18.1.11. If L{cos2 t} = s2+2
s(s2+4)

, then find L{cos2(at)}. Answer: (s2+2a2)
s(s2+4a2)

18.1.1 Laplace Transform of Derivatives

Theorem 18.1.12. If L{F (t)} = f(s), then L{F (n)(t)} = snf(s) − sn−1F (0) − sn−2F ′(0) − . . . −
sF (n−2)(0)− F (n−1)(0) where F (n)(t) stands for dnF (t)

dtn .

18.1.2 The Dirac Delta Function

The Dirac delta or Dirac’s delta is a mathematical construct introduced by theoretical physicist Paul Dirac.
Informally, it is a generalised function representing an infinitely sharp peak bounding unit area: a ‘function’
δ(x) that has the value zero everywhere except at x = 0 where its value is infinitely large in such a way that
its total integral is 1.

The Dirac delta is not strictly a function, while for many purposes it can be manipulated as such, formally
it can be determined as a distribution. In many applications, the Dirac delta function is regarded as limit of a
sequence of functions having a tall spike at the origin. The approximating functions of the sequence are thus
"approximate" or "nascent" delta functions.

δ(x) = +∞, x = 0

= 0, x ̸= 0

and ∫ +∞

−∞
δ(x)dx = 1.

18.1.3 Laplace Transform of Integral

Theorem 18.1.13. If L{F (t)} = f(s), then 1
sf(s) = L

{∫ t
0 F (u) du

}
.

18.1.4 Multiplication by Powers of t

Theorem 18.1.14. If L{F (t)} = f(s), then L{tnF (t)} = (−1)n dn

dsn f(s) for n = 1, 2, 3, . . ..
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18.1.5 Division by t

Theorem 18.1.15. If L{F (t)} = f(s), then L{F (t)
t } =

∫∞
s f(x) dx.

Note: Proofs of the above theorems are left for the readers.

Example 18.1.16. Find L{cos2 t} and L{sin2 t}.

Solution:

L{cos2 t} =
1

2
L{1 + cos 2t} =

1

2

[
1

s
+

s

s2 + 22

]
=

(s2 + 2)

s(s2 + 4)

L{sin2 t} =
1

2
L{1− cos 2t} =

1

2

[
1

s
− s

s2 + 22

]
=

2

s(s2 + 4)

Example 18.1.17. Using Laplace transform prove that (i)
∫∞
0

(
sin t
t

)
dt = π

2 and (ii)
∫∞
0 te−3t sin t dt = 3

50 .

Solution: (i) We know, L{sin t} = 1
p2+1

, then

L

{
sin t

t

}
=

∫ ∞

p

dp

1 + p2
=
(
tan−1 p

)∞
p

=
π

2
− tan−1(p) = cot−1(p) = tan−1

(
1

p

)
Putting p = 0, we get

∫∞
0

(
sin t
t

)
dt = tan−1(∞) = π

2 .

(ii) Since L{sin t} = 1
p2+1

and so L{t sin t} = (−1)1 d
dp

(
1

p2+1

)
= 2p

(p2+1)2

⇒
∫ ∞

0
e−pt(t sin t) dt =

2p

(p2 + 1)2
Putting p = 3, we have

∫ ∞

0
e−3t(t sin t) dt =

3

50

Example 18.1.18. Find L{Fε(t)} where Fε(t) is dirac delta function.

Solution:

Fε(t) =

{
1/ε if 0 ≤ t ≤ ε
0 if t > ε

L{Fε(t)} =

∫ ∞

0
e−stFε(t) dt =

∫ ε

0
e−stFε(t) dt+

∫ ∞

ε
e−stFε(t) dt

=

∫ ε

0

e−st

ε
dt+

∫ ∞

ε
e−st · 0 · dt = 1

ε

[
e−st

−s

]ε
t=0

+ 0

=
1

εs
(1− e−εs). (18.1.5)

18.1.6 Inverse Laplace transform

Let L{F (t)} = F (p). Then F (t) is called an inverse Laplace transform of F (p), and we write F (t) =
L−1{F (p)}, in which L−1 is known as the inverse Laplace transformation operator.

Theorem 18.1.19. Lerch’s Theorem: Let L{F (t)} = f(s). Let F (t) be piecewise continuous in every finite
interval 0 ≤ t ≤ a and of exponential order for t > a, then the inverse Laplace transform of F (t) is unique
f(s).
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Table of inverse Laplace transform of some elementary functions
Serial Number F (p) L−1{F (p)}

1 1/p 1
2 1/pn+1, n > −1 tn/Γ(n+ 1)
3 1/pn+1 (n is positive integer) tn/n!
4 1/(p− a) eat

5 1/(p2 + a2) (sin at)/a
6 p/(p2 + a2) cos at
7 1/(p2 − a2) (sin at)/a
8 p/(p2 − a2) cos at

Theorem 18.1.20. Inverse Laplace transform of derivatives: If L−1{f(s)} = F (t), then L−1{f (n)(s)} =
(−1)ntnF (t)

Theorem 18.1.21. First Shifting theorem: If L−1{f(s)} = F (t), then L−1{f(s− a)} = eatF (t).

Theorem 18.1.22. Second Shifting theorem: If L−1{f(s)} = F (t), then L−1{e−asf(s)} = G(t), where

G(t) =

{
F (t− a) if t > a
0 if t < a

Example 18.1.23.

Find L−1

{
s− 2

(s− 2)2 + 52
+

s+ 4

(s+ 4)2 + 92
+

1

(s+ 2)2 + 32

}
Solution:

L−1

{
s− 2

(s− 2)2 + 52
+

s+ 4

(s+ 4)2 + 92
+

1

(s+ 2)2 + 32

}
= L−1

{
s− 2

(s− 2)2 + 52

}
+ L−1

{
s+ 4

(s+ 4)2 + 92

}
+ L−1

{
1

(s+ 2)2 + 32

}
= e2tL−1

{
s

s2 + 52

}
+ e−4tL−1

{
s

s2 + 92

}
+ e−2tL−1

{
1

s2 + 32

}
= e2t cos 5t+ e−4t cos 9t+

e−2t

3
sin 3t

Example 18.1.24. Find L−1
{

e4−3p

(p+4)5/2

}
Solution:

L−1

[
1

(p+ 4)5/2

]
= e−4tL−1{ 1

(p− 4 + 4)5/2
} = e−4tL−1

{
1

p(3/2)+1

}
= e−4t t3/2

Γ(5/2)

But Γ

(
5

2

)
=

3

2
· 1
2
·
√
π =

3

4

√
π,

Therefore, L−1

[
1

(p+ 4)5/2

]
=

4

3
√
π
e−4tt3/2 ⇒ L−1

[
e4−3p

(p+ 4)5/2

]
= e4L−1

[
e−3p

(p+ 5)5/2

]
Using second shifting theorem

L−1

[
e4−3p

(p+ 4)5/2

]
=

{
4e4

3
√
π
e−4(t−3)(t− 3)3/2 if t > 3

0 if t < 4
=

4e4

3
√
π
e−4(t−3)(t− 3)3/2H(t− 3).
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Note 18.1.25. In the above example H(t) =

{
1 if t > 0
0 if t < 0

is Heaviside unit step function.

Definition 18.1.26. Convolution (or Faltung): The convolution of F (t) and G(t) is denoted and defined as

F ∗G =

∫ t

0
F (x)G(t− x) dx or F ∗G =

∫ t

0
F (t− x)G(x) dx

Theorem 18.1.27. Convolution theorem or Convolution property: If L−1{F (p)} = F (t) and L−1{G(p)} =
G(t), then L−1{F (p)G(p)} =

∫ t
0 F (x)G(t− x) dx = F ∗G or L−1{F (p)G(p)} =

∫ t
0 F (t− x)G(x) dx =

F ∗G.

Example 18.1.28. Find L−1
{

1
(s+a)(s+b)

}
.

Solution: Let f(s) = 1
s−a , g(s) = 1

s+b . Then F (t) = e−at, G(t) = e−bt. Hence

L−1{f(s) · g(s)} =

∫ t

0
F (u)G(t− u) du

=

∫ t

0
e−aue−b(t−u) du = e−bt

∫ t

0
eu(b−a)du

= e−bt

[
eu(b−a)

b− a

]t
u=0

=
e−bt

b− a
[et(b−a) − 1] =

e−at − e=bt

b− a

Example 18.1.29. Apply the convolution theorem to show that∫ t

0
sinu cos(t− u) du =

1

2
(t sin t).

Solution: Let F (t) =
∫ t
0 sinu cos(t− u) du. Then, by convolution theorem,

L{F (t)} = L{sin t}L{cos t} =
1

s2 + 1
· s

s2 + 1
=

s

(s2 + 1)2

∴ F (t) = L−1

{
s

(s2 + 1)2

}
In order to calculate the above inverse Laplace transform, let F (t) = sin t. Therefore,

f ′(s) = − 2s

(s2 + 1)2
⇒ L−1{f ′(s)} = L−1

{
− 2s

(s2 + 1)2

}
⇒ (−1)1t1L−1{f(s)} = L−1

{
− 2s

(s2 + 1)2

}
⇒ t sin t

2
= L−1

{
s

(s2 + 1)2

}
Hence F (t) = t sin t

2 .

Exercise 18.1.30. (i) Evaluate L−1
{

1
(s+1)(s+2)

}
Answer: e2t−e−t

3 .

(ii) Evaluate L−1
{

1
(s−3)(s+4)

}
Answer: 1

7(e
3t − e−4t).
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18.1.7 Some special types of integral equations

Definition 18.1.31. (i) Integro-differential equation: An integral equation in which various derivatives of
the unknown function y(t) can also be present is said to be an integro-differential equation. For example, the
following integral equation is an integro-differential equation.

y′(t) = y(t) + f(t) +

∫ t

0
sin(t− x)y(x) dx.

Definition 18.1.32. (i) Integral equation of convolution type: The integral equation

y(t) = f(t) +

∫ t

0
K(t− x)y(x) dx,

in which the kernel K(t− x) is a function of the difference (t− x) only, is known as integral equation of the
convolution type. Using the definition of convolution, we may re-write it as

y(t) = f(t) +K(t) ∗ y(t).

Example 18.1.33. Solve the integro-differential equation

y′(t) = sin t+

∫ t

0
y(t− x) cosx dx, where y(0) = 0

Solution: Rewriting the given equation, we have

y′(t) = sin t+ y(t) ∗ cos t, y(0) = 0

Applying the Laplace transform on both sides, we obtain

L{y′t)} = L{sin t}+ L{y(t) ∗ cos t}

⇒ pL{y(t)} − y(0) =
1

p2 + 1
+ L{y(t)}L{cos t}

⇒
(
1− 1

p2 + 1

)
pL{y(t)} =

1

p2 + 1

⇒ L{y(t)} =
1

p3
, Inverting we have y(t) = L−1{ 1

p3
} =

t2

2!
=

t2

2
.

Exercise 18.1.34. (i) Solve y′(t) = t+
∫ t
0 y(t− x) cosx dx, y(0) = 4 Answer: y(t) = 4 + 5

2 t
2 + 1

24 t
4.

Example 18.1.35. Solve the integral equation y(t) = 1 +
∫ t
0 y(x) sin(t− x) dx, .

Solution: The given integral equation can be re-written as y(t) = 1 + y(t) ∗ sin t. Applying Laplace
transform, we obtain

L{y(t)} = L{1}+ L{y(t)} · L{sin t}

⇒ L{y(t)} =
1

p
+ L{y(t)} × 1

p2 + 1
⇒
(
1− 1

p2 + 1

)
L{y(t)} =

1

p

⇒ L{y(t)} =
p2 + 1

p3
=

1

p
+

1

p3

Inverting the above equation, we have

y(t) = L−1{y(t)} = L−1{1
p
}+ L−1{ 1

p3
} = 1 +

t2

2!
= 1 +

t2

2
.
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Exercise 18.1.36. (i) Solve y(t) = a sin t −
∫ t
0 y(x) cos(t − x) dx, Answer:

y(t) = a t e−t.
(ii) Solve y(t) = e−t − 2

∫ t
0 cos(t− x) y(x) dx Answer: y(t) = e−t(1− t)2.

(iii) Solve y(t) = t+2
∫ t
0 cos(t−x)y(x) dx Answer: y(t) = 2et(t−1)+2+ t.

(iv) Solve t =
∫ t
0 e

t−xy(x) dx Answer: y(t) = 1− t.

18.1.8 Application to solve ordinary differential equations

Consider the differential equation

a
d2x

dt2
+ b

dx

dt
+ x = F (t) (18.1.6)

Case I: When a, b are constants. Taking Laplace transform on the both sides of Eq. (18.1.6), we have

aL{x′′}+ bL{x′}+ L(x) = L{F (t)}. (18.1.7)

Letting L{x(t)} = x(s), we have from Eq. (18.1.7)

a{s2x− s x(0)− x′(0)}+ b{sx− x(0)}+ x = f(s)

Required solution is obtained by taking the inverse Laplace transform of x(s).

Example 18.1.37. Solve by using Laplace transformation:

(D2 + 9)y = cos(2t) if y(0) = 1, y(π/2) = −1

Solution: Taking Laplace transform, we get

p2y − py(0)− y′(0) + 9y =
p

p2 + 22

⇒ (p2 + 9)y = p+ a+
p

p2 + 22
where y′(0) = a

⇒ y =
p

p2 + 32
+

a

p2 + 32
+

p

(p2 + 22)(p2 + 32)

⇒ y =
p

p2 + 32
+

a

p2 + 32
+

1

5

[
p

p2 + 22
− p

p2 + 32

]
⇒ y =

4

5

p

p2 + 32
+

a

p2 + 32
+

1

5

p

p2 + 22

Taking inverse Laplace transform, we get

y =
4

5
cos 3t+

a

3
sin 3t+

1

5
cos 2t ⇒ −1 = y(π/2) = 0− a

3
− 1

5
⇒ a

3
=

4

5

∴ y =
4

5
cos 3t+

4

5
sin 3t+

1

5
cos 2t.

Example 18.1.38.

Solve 2
d2y

dt2
+ 5

dy

dt
+ 2y = e−2t, y(0) = 1, y′(0) = 1
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Solution: Taking Laplace transform of the equation

(2D2 + 5D + 2)y = e−2t,

we get 2[s2y − sy(0)− y′(0)] + 5[sy − y(0)] + 2y =
1

s− 2

Putting y(0) = 1 = y′(0), we get

2[s2y − s− 1] + 5[sy − 1] + 2y =
1

s− 2

⇒ (2s2 + 5s+ 2)y − 2s− 7 =
1

s− 2

⇒ y =
1

(s+ 2)(2s2 + 5s+ 2)
+

2s+ 7

2s2 + 5s+ 2

⇒ y =
1

(s+ 2)2(2s+ 1)
+

2s+ 7

(s+ 2)(2s+ 1)

Now L−1

{
1

(s+ 2)2
(2s+ 1)

}
= e−2tL−1

{
1

s2{2(s− 2) + 1}

}
= e−2tL−1

{
1

s2(2s− 3)

}
But

1

s(2s− 3)
=

1

3

[
2

2s− 3
− 1

s

]
=

1

3

[
1

s− 3
2

− 1

s

]

⇒ L−1

{
1

s(2s− 3)

}
=

1

3

[
e3t/2 − 1

]
⇒ L−1

{
1

s2(2s− 3)

}
=

1

3

∫ t

0

[
e3t/2 − 1

]
dx

⇒ L−1

{
1

s2(2s− 3)

}
=

2

3

[
e3t/2 − 1

]
− 1

3
t

and
2s+ 7

(s+ 2)(2s+ 1)
=

4

2s+ 1
− 1

s+ 2
=

2

s+ 1
2

− 1

s+ 2

⇒ L−1

{
2s+ 7

(s+ 2)(2s+ 1)

}
= 2e−t/2 − e−2t.

Using these inverse Laplace transforms we get

y(t) = (2e−t/2 − e6−2t) + e−2t

[
2

9
(e3t/2 − 1)− t

3

]
=

20

9
e−t/2 − e−2t

(
11

9
+

t

3

)

Exercise 18.1.39. (i) Solve y′′ + 25y = 10 cos(5t), y(0) = 2, y′(0) = 0, Answer: y(t) =
t sin 5t+ 2 cos(5t).
(ii) Solve (D + D2)x = 2 when x(0) = 3, x′(0) = 1 Answer:
y(t) = e−t + 2t+ 2.
(iii) Solve (D2+D)y = t2+2t when y(0) = 4, y′(0) = −2 Answer: 2+2e−t+ t3

3 .

Case II: When a, b are functions of t, i.e., of the form

t2
d2x

dt2
+ t

dx

dt
+ x = F (t) (18.1.8)
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In this case, we use the theorem

L

{
tm

dnx

dtn

}
= L{tmx(n)(t)} = (−1)m

dm

dsm
L{x(n)} (18.1.9)

Taking the Laplace transform of Eq. (18.1.8),

(−1)2
d2

ds2

[
s2x− s x(0)− x′(0)

]
− d

ds

{
sx− x(0)

}
+ x = f(s)

The required solution is obtained by taking inverse Laplace transform of x(s).

Example 18.1.40. Using Laplace transform solve the following differential equation.

y′′ + ty′ − y = 0 if y(0) = 0, y′(0) = 1

Solution: Taking Laplace transform of y′′ + ty′ − y = 0, we get

p2y − py(0)− y′(0) + (−1)1
d

dp

[
py − y(0)

]
− y = 0

Putting y(0) = 0, y′(0) = 1, we get

p2y − 1− d

dp

[
p y
]
− y = 0

⇒ (p2 − 1)y −
(
y + p

dy

dp

)
= 1

⇒ (p2 − 2)y − p
dy

dp
= 1

⇒ dy

dp
+

(
2

p
− p

)
y = −1

p

Therefore the integrating factor

I.F = e
∫ (

2
p
−p

)
dp

= e2 log p−p2/2 = elog p
2 · e−p2/2 = p2e−p2/2

Therefore

yp2e−p2/2 = c+

∫
(p2e−p2/2)

(
−1

p
dp

)
= c−

∫
pep

2/2dp.

Put p2/2 = z, then p dp = dz. Therefore,

yp2e−p2/2 = c−
∫

e−zdz = c+ e−z = c+ e−p2/2

⇒ y =
c

p2
ep

2/2 +
1

p2

Taking inverse transform,

y(t) = t+ cL−1

{
1

p2
ep

2/2

}
Subjecting this to the condition y = 0 when t = 0, we get c = 0. Therefore, the solution is

y(t) = t

Exercise 18.1.41. (i) Solve ty′′+(1−2t)y′−2y = 0, y(0) = 1, y′(0) = −2 Answer: y(t) = e2t.
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Unit 19

Course Structure

• Fourier Transform: Fourier transform of some elementary functions and their derivatives, inverse Fourier
transform, convolution theorem & Parseval’s relation and their application, Fourier sine and cosine
transform.

19.1 Introduction

The Fourier transform is a generalization of the Fourier series representation of functions. The Fourier series
is limited to periodic functions, while the Fourier transform can be used for a larger class of functions which
are not necessarily periodic. Since the transform is essential to the understanding of several exercises, we
briefly explain some basic Fourier transform concepts in this unit.

Objective

After reading this unit readers will able to know fundamental mathematical properties of the Fourier transform
including linearity, shift, symmetry, scaling, modulation and convolution. Further, the reader will be able to
calculate the Fourier transform or inverse transform of common functions.

19.1.1 The Infinite Fourier Transform

Definition 19.1.1. Infinite Fourier sine transform: The Fourier sine transform of F (x) on 0 < x < ∞ is
denoted by fs(s) or Fs{F (x)} and is defined as

fs(s) = Fs{F (x)} =

∫ ∞

0
F (x) sin sx dx.

The inverse formula for infinite Fourier sine transform is given by

F (x) = F−1
s {fs(s)} =

2

π

∫ ∞

0
fs(s) sin sx ds.
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Definition 19.1.2. Infinite Fourier cosine transform: The Fourier sine transform of F (x) on 0 < x < ∞ is
denoted by fc(s) or Fc{F (x)} and is defined as

fc(s) = Fc{F (x)} =

∫ ∞

0
F (x) cos sx dx.

The inverse formula for infinite Fourier cosine transform is given by

F (x) = F−1
c {fc(s)} =

2

π

∫ ∞

0
fc(s) cos sx ds.

Definition 19.1.3. Infinite Fourier transform: The infinite Fourier transform of F (x) on 0 < x < ∞ is
denoted by f(s) or F{F (x)} and is defined as

f(s) = F{F (x)} =

∫ ∞

−∞
F (x)e−isx dx.

The inverse formula for infinite Fourier sine transform is given by

F (x) = F−1{f(s)} =
1

2π

∫ ∞

−∞
f(s) eisx ds.

19.1.2 Relationship between Fourier transform and Laplace transform

We define a function as follows:

F (t) =

{
e−xtϕ(t), , t > 0
0 , t < 0

Taking infinite Fourier transform of this function we obtain

F{F (t)} =

∫ ∞

−∞
e−iytF (t) dt =

∫ 0

−∞
e−iytF (t) dt+

∫ ∞

0
e−iytF (t) dt

=

∫ 0

−∞
e−iyt · 0 dt+

∫ ∞

0
e−iyte−xtϕ(t) dt =

∫ ∞

0
e−(x+iy)tϕ(t) dt

= e−stϕ(t) dt = L{ϕ(t)}, where s = x+ iy

Therefore F{F (t)} = L{ϕ(t)}. This is the required relation between Fourier transform and Laplace trans-
form.

19.1.3 Some theorems

Theorem 19.1.4. Linear Property: If c1 and c2 are arbitrary constants, then

F{c1F (x) + c2G(x)} = c1F{F (x)}+ c2F{G(x)}

Theorem 19.1.5. Change of Scale Property: If f(s) is the Fourier transform of F (x), then 1
af
(
s
a

)
is the

Fourier transform of F (ax).

Theorem 19.1.6. Shifting Property: If f(s) is the Fourier transform of F (x), then e−iasf(s) is the Fourier
transform of F (x− a).
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Theorem 19.1.7. Modulation Theorem: If F (x) has the Fourier transform f(s), then F (x) cos ax has the
Fourier transform

1

2
f(s− a) +

1

2
f(s+ a).

Theorem 19.1.8. Derivative Theorem: The Fourier transform of F ′(x), the derivative of F (x), is is f(s),
where f(s) is the Fourier transform of F (x). Moreover,

F

{
dnF

dxn

}
= (is)nf(s), where F{F (x)} = f(s)

if the first (n− 1) derivative of F (x) vanish identically as x → ±∞.

• Proofs are left as exercise.

Theorem 19.1.9. Convolution Theorem: The convolution for the Fourier transform is defined as

F ∗G =

∫ ∞

−∞
F (u) G(x− u) du.

If F{f(x)} and F{g(x)} are the Fourier transforms of functions f(x) and g(x) respectively, then Fourier
transform of the convolution of f(x) and g(x) is the product of the their Fourier transforms, i.e.,

F{f(x) ∗ g(x)} = F{f(x)} · F{g(x)}

Proof.

We have
∞

F{f(x) ∗ g(x)} =

∫
{f(x) ∗ g(x)}e−isxdx

−∞

=

∫ ∞ [∫ ∞
f(u) g(x− u) du

x=−∞ u=−∞

]
e−isxdx

=

∫ ∞ ∞
f(u) g(x u)e−isxdx du (Changing order of integration)∫u=−∞

[∫
x=

−
−∞

∞

]
= f(u)e−isuF{g(x) du

u=
} (Using Shifting Property)

−∞

= F{g(x)}
∫ ∞

f(u)e−isudu
u=−∞

= F{g(x)} · F{f(x)} = F{f(x)} · F{g(x)}

Example 19.1.10. Find the Fourier transform of f(x) =
{

x |x| ≤ a
0 |x| > a.

185



UNIT 19.

Solution: Given that f(t) =
{

t −a ≤ t ≤ a
0 |t| > a.

Now

F{f(t)} =

∫ ∞

−∞
e−istf(t) dt

=

∫ −a

−∞
e−istf(t) dt+

∫ a

−a
e−istf(t) dt+

∫ ∞

a
e−istf(t) dt

=

∫ a

∞
eisyf(−y) (−dy) +

∫ a

−a
e−ist t dt+

∫ ∞

a
e−ist · 0 · dt

=

∫ ∞

a
eisy · 0 · dy +

∫ a

−a
e−ist t dt

=
(
− a

is

)
{e−isa + eisa}+ 1

s2
{e−isa − eisa}

=

(
2ai

s

)
cos(sa)− 2

s2
sin(sa)

Example 19.1.11. Find the Fourier transform of f(x) =
{

1 |x| < a
0 |x| > a.

and hence evaluate

(i)

∫ ∞

−∞

sin sa · cos sx
s

dx, (ii)

∫ ∞

0

sin s

s
ds.

Solution: For the first part, proceed as the above example and find the answer is 2
s sin sa. For the second

part, let F{f(x)} = f(s). We know that if

f(s) = F{f(x)} =

∫ ∞

−∞
f(x)e−isxdx then f(x) = F−1{f(s)} =

1

2π

∫ ∞

−∞
f(s)eisxds.

∴
∫ ∞

−∞
f(s)eisxds = 2πf(x) =

{
2π if|x| < a
0 if|x| > a.

But f(s) = 2 sin sa
s , by first part.

∴
∫ ∞

−∞

2 sin sa

s
(cos sx+ i sin sx) ds =

{
2π if |x| < a
0 if |x| > a.

⇒
∫ ∞

−∞

sin sa cos sx

s
ds+ i

∫ ∞

−∞

sin sa sin sx

s
ds =

{
π if |x| < a
0 if |x| > a.

Equating real parts on the both sides, we obtain∫ ∞

−∞

sin sa sin sx

s
ds =

{
π if |x| < a
0 if |x| > a.

Now if x = 0 and a = 1, then the second part gives∫ ∞

−∞

sin s

s
ds = π ⇒ 2

∫ ∞

0

sin s

s
ds = π ⇒

∫ ∞

0

sin s

s
ds =

π

2
.
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Exercise 19.1.12. (i) Find the Fourier transform of F (x) =

{
(1− x2), |x| < 1
0 |x| > 1.

and hence evaluate
∫∞
0

(
x cosx−sinx

x3

)
cos
(
x
2

)
dx. Answer: f(s) = 4

s3
(sin s−s cos s);−3π

16 .
(ii) Show that the Fourier transform of f(x) = e−x2/2 is

√
2πe−s2/2

(iii) Find the complex Fourier transform of f(x) = e−a|x| Answer: f(s) = 2a
s2+a2

.
(iv) Find the inverse Fourier transform of f(s) = e−|s|y Answer: F−1{f(s)} = y

π(y2+x2)
.

19.1.4 Problems related to Integral Equations

Example 19.1.13. Solve the integral equation
∫∞
0 f(x) cos sx dx = e−λ.

Solution: We have
∫∞
0 f(x) cos sx dx = e−s. By definition,

Fc{f(x)} =

∫ ∞

0
f(x) cos sx dx = f c(s) and F−1

c {f c(s)} = f(x) =
2

π

∫ ∞

0
f c(s) cos sx ds

Comparing this with the given equation, we have f c(s) = e−s. Using this, we obtain

f(x) =
2

π

∫ ∞

0
e−s cosxs ds =

2

π

1

1 + x2
.

Example 19.1.14. Solve the integral equation
∫∞
0 F (x) sin(xt) dx = F (x) =


1 , 0 ≤ t < 1
2 , 1 ≤ t < 2
0 , t ≥ 2

Solution: By the definition, we know

Fs{F (x)} =

∫ ∞

0
F (x) sin(sx) dx = fc(s). (19.1.1)

Then fs(s) =


1 , 0 ≤ t < 1
2 , 1 ≤ t < 2
0 , t ≥ 2

The sine inversion formula relative to (19.1.2) is

F−1
s {fs(s)} = F (x) =

2

π

∫ ∞

0
fs(s) sin sx ds

From which we have

π

2
F (x) =

∫ ∞

0
fs(s) sin sx ds

⇒ π

2
F (x) =

∫ 1

0
fs(s) sin sx dx+

∫ 2

1
fs(s) sin sx ds+

∫ ∞

2
fs(s) sin sx ds

⇒ π

2
F (x) =

∫ 1

0
1 · sin sx dx+

∫ 2

1
2 · sin sx ds+

∫ ∞

2
0 · sin sx ds

⇒ π

2
F (x) =

1

x

[
(1− cosx) + 2(cosx− cos 2x)

]
=

1 + cosx− 2 cos 2x

x

⇒ F (x) =
2

πx
(1 + cosx− 2 cos 2x)
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Exercise 19.1.15. (i) Show that
∫∞
0

cosλx
λ2+1

dλ = π
2 e

−x

(ii) Solve the integral equation
∫∞
0 F (x) cosλx dx =

{
1− λ, 0 ≤ λ ≤ 1
0, λ > 1.

Answer: F (x) = 2
πx2 (1− cosx)

19.1.5 The finite Fourier Transform

Definition 19.1.16. The finite Fourier sine transform of F (x): The finite Fourier sine transform of F (x)
on 0 < x < l, is defined by

Fs{F (x)} = fs(s) =

∫ l

0
F (x) sin

sπx

l
dx

where s is a positive integer. The function F (x) is then called the inverse finite Fourier sine transform of fs(s)
and is given by

F−1
s {fs(s)} = F (x) =

2

l

∞∑
s=1

fs(s) sin
sπx

l

This formula is obtained from Fourier sine series f(x) =
∞∑
n=1

bn sin
nπx

l
.

Definition 19.1.17. The finite Fourier cosine transform of F (x): The finite Fourier cosine transform of
F (x) on 0 < x < l, is defined by

Fc{F (x)} = fc(s) =

∫ l

0
F (x) cos

sπx

l
dx

where s is a positive integer or zero. The function F (x) is then called the inverse finite Fourier cosine
transform of fc(s) and is given by

F−1
c {fc(s)} = F (x) =

1

l
fc(0) +

2

l

∞∑
s=1

fc(s) cos
sπx

l

This formula is obtained from Fourier cosine series F (x) =
a0
2

+
∞∑
n=1

bn cos
nπx

l
.

Theorem 19.1.18. Fourier Integral Theorem: It sates that if f(x) satisfies the following conditions:

• f(x) satisfies the Dirichlet conditions in every interval −l ≤ x ≤ l.

•
∫∞
−∞ |f(x)| dx converges, i.e., f(x) is absolutely integrable in the interval −∞ < x < ∞, then

f(x) =
1

2π

∫ ∞

s=−∞

∫ ∞

t=−∞
f(t) cos s(x− t) ds dt.

The integral on R.H.S is called Fourier integral or Fourier integral expansion of f(x).
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Theorem 19.1.19. Different forms of Fourier integral formula:

(i)f(x) =
1

π

∫ ∞

s=0

∫ ∞

t=−∞
f(t) cos s(x− t) ds dt.

(ii)f(x) =
2

π

∫ ∞

0

∫ ∞

0
f(t) cos st cos sx ds dt (Cosine Form)

(iii)f(x) =
2

π

∫ ∞

0

∫ ∞

0
f(t) sin st sin sx ds dt (Sine Form)

(iv)f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(t) e−isteisx ds dt (Exponential Form)

Theorem 19.1.20. Parseval’s identity for Fourier series: Suppose the Fourier series corresponding to f(x)
converges uniformly to f(x) in the interval −l < x < l, then

1

l

∫ l

−l

[
f(x)

]2
dx =

a20
2

+
∞∑
n=1

(a2n + b2n),

where the integral on L.H.S is supposed to exist.

Proof. Let the Fourier series of f(x) converges uniformly to f(x) at every point of the interval −l < x < l,
so that

f(x) =
a0
2

+
∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
(19.1.2)

and that term by term integration of this series is possible. Here

an =
1

l

∫ l

−l
f(x) cos

nπx

l
dx (n = 0, 1, 2, 3, . . .) and bn =

1

l

∫ l

−l
f(x) sin

nπx

l
dx (n = 1, 2, 3, . . .)

Multiplying (19.1.2) by f(x) and integrating term by term from −l to l, we get∫ l

−l

[
f(x)

]2
dx =

a0
2

∫ l

−l
f(x) dx+

∞∑
n=1

an

∫ l

−l
f(x) cos

nπx

l
dx+

∞∑
n=1

bn

∫ l

−l
f(x) sin

nπx

l
dx

⇒
∫ l

−l

[
f(x)

]2
dx =

a0
2

· la0 +
∞∑
n=1

l(a2n + b2n)

⇒ 1

l

∫ l

−l

[
f(x)

]2
dx =

a20
2

+

∞∑
n=1

(a2n + b2n)

Theorem 19.1.21. Parseval’s identity for Fourier transform. Rayleigh’s Theorem: If f(p) and g(p) are
complex Fourier transforms of F (x) and G(x) respectively, then

(i)
1

2π

∫ ∞

−∞
f(p) g(p) dp =

∫ ∞

−∞
F (x) G(x) dx and (ii)

1

2π

∫ ∞

−∞
|f(p)|2 dp =

∫ ∞

−∞
|F (x)|2 dx

where bar represents the complex conjugate.
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Proof. Using the inversion formula for Fourier transform, we get

G(x) =
1

2π

∫ ∞

−∞
g(p) eipx dp (19.1.3)

Taking conjugate complex of the both sides in (19.1.3), we obtain

G(x) =
1

2π

∫ ∞

−∞
g(p)e−ipx dp (19.1.4)

Therefore,∫ ∞

−∞
F (x) G(x) dx =

∫ ∞

−∞
F (x) dx ·

{
1

2π

∫ ∞

−∞
g(p)e−ipx dp

}
, (Using (19.1.4))

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
F (x) g(p)e−ipx dx dp (On changing order of integration)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
F (x) g(p)e−ipx dp dx

=
1

2π

∫ ∞

−∞
g(p) dp

[∫ ∞

−∞
F (x) e−ipx dx

]
=

1

2π

∫ ∞

−∞
g(p) dp {f(p)} (By the def. of Fourier transform)

=
1

2π

∫ ∞

−∞
f(p) g(p) dp

Thus, we have proved that ∫ ∞

−∞
F (x) G(x) dx =

1

2π

∫ ∞

−∞
f(p) g(p) dp. (19.1.5)

This proves the first part. Now putting G(x) = F (x) in (19.1.5), we get∫ ∞

−∞
F (x) F (x) dx =

1

2π

∫ ∞

−∞
f(p) f(p) dp ⇒

∫ ∞

−∞
|F (x)|2 dx =

1

2π

∫ ∞

−∞
|f(p)|2 dp.

Example 19.1.22. Use Parseval’s identity to prove that

(i)

∫ ∞

0

dt

(a2 + t2)(b2 + t2)
=

π

2ab(a+ b)
, (ii)

∫ ∞

0

sin(at) dt

t(a2 + t2)
=

π

2

(
1− e−a2

a2

)
.

Solution: (i) Let F (x) = e−ax, G(x) = e−bx. Now,

fc(p) =

∫ ∞

0
F (x) cos(px) dx =

∫ ∞

0
e−ax cos(px) dx =

a

a2 + p2

Similarly, we can find gc(p) =
b

b2+p2
. By Parseval’s identity for Fourier transform, we get

2

π

∫ ∞

0
fc(p) gc(p) dp =

∫ ∞

0
F (x) G(x) dx.
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Putting values, we get

2

π

∫ ∞

0

a

(a2 + p2)
· b

(b2 + p2)
dp =

∫ ∞

0
e−ax · e−bx dx

⇒
∫ ∞

0

dp

(b2 + p2)(a2 + p2)
=

π

2ab

[
e−(a+b)x

−(a+ b)

]∞
x=0

=
π

2ab(a+ b)
{1− 0}

⇒
∫ ∞

0

dt

(b2 + t2)(a2 + t2)
=

π

2ab(a+ b)

(ii) Let F (x) = e−ax, then fc(p) =
a

a2+p2
. Also let G(x) =

{
1 , 0 < x < a
0 , x > a.

Then

gc(p) =

∫ ∞

0
G(x) cos(px) dx

=

∫ a

0
G(x) cos(px) dx+

∫ ∞

a
G(x) cos(px) dx

=

∫ a

0
cos(px) dx+

∫ ∞

a
0 · cos(px) dx

=

[
sin(px)

p

]a
x=0

=
sin(pa)

p

Since
2

π

∫ ∞

0
fc(p) gc(p) dp =

∫ ∞

0
F (x) G(x) dx

⇒ 2

π

∫ ∞

0

a

a2 + p2
sin(pa)

p
dp =

∫ ∞

0
e−ax G(x) dx

⇒ 2a

π

∫ ∞

0

sin(pa) dp

p(a2 + p2)
dp =

∫ a

0
e−ax G(x) dx+

∫ ∞

a
e−ax G(x) dx

⇒ 2a

π

∫ ∞

0

sin(pa) dp

p(a2 + p2)
dp =

∫ a

0
e−ax · 1 dx+

∫ ∞

a
e−ax · 0 dx

⇒ 2a

π

∫ ∞

0

sin(pa) dp

p(a2 + p2)
dp =

1

a
(1− e−a2)

⇒
∫ ∞

0

sin(pa) dp

p(a2 + p2)
dp =

π

2a2
(1− e−a2).

Example 19.1.23. Find the Fourier transform of f(x) defined by

f(x) =

{
1 , |x| < a
0 , |x| > a.

and hence prove that ∫ ∞

0

sin2(ax)

x2
dx =

πa

2
.
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Solution: First Part:

F{f(x)} =

∫ ∞

−∞
e−ipxf(x) dx

=

∫ −a

−∞
e−ipx f(x) dx+

∫ a

−a
e−ipx f(x) dx+

∫ ∞

a
e−ipx f(x) dx

=

∫ a

∞
eipy f(−y) (−dy) +

∫ a

−a
e−ipx dx+

∫ ∞

a
e−ipx · 0 dx

=

∫ ∞

a
eipy · 0 · dy + 1

−ip

(
e−ipx

)a
−a

+ 0

=
eipa − e−ipa

ip
=

2

p
sin pa = f(p)

Second Part: Using Parseval’s identity for Fourier integral, we get

∫∞
−∞ |f(x)|2dx =

1

2π

∫ ∞

−∞
|f(p)|2dp

⇒
∫ a
−a 1

2dx =
1

2π

∫ ∞

−∞

4

p2
sin2 pa dp

⇒ 2a =
2

2π

∫ ∞

0

4

p2
sin2 pa dp

⇒
∫∞
0

sin2(ax)
x2 dx =

πa

2
.

19.1.6 Problems related to finite Fourier Sine and Cosine transform:

Example 19.1.24. Find finite Fourier sine and cosine transform of

f(x) = x2, 0 < x < 4.

Solution: (i)

Fs{f(x)} =

c∫
0

f(x) sin
nπx

c
dx =

4∫
0

x2 sin
nπx

4
dx

=

[
− 4

nπ
x2 cos

nπx

4

]4
x=0

+

4∫
0

2x
4

nπ
cos

nπx

4
dx

= − 43

nπ
cosnπ +

8

nπ

[
4x

nπ
sin

nπx

4
+

42

n2π2
cos

nπx

4

]4
x=0

= − 43

nπ
cosnπ +

8 · 42

nπ · n2π2
(cosnπ − 1)

∴ fs(n) = − 64

nπ
cosnπ +

128

n3
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(ii)

Fc{f(x)} = f c(n) =

4∫
0

f(x) cos
nπx

4
=

4∫
0

x2 cos
nπx

4
dx

=

[
4x2

nπ
sin

nπx

4

]4
x=0

−
4∫

0

4

nπ
2x sin

nπx

4
dx

= 0− 8

nπ

[
− 4x

nπ
cos

npx

4
+

42

n2π2
sin

nπx

4

]4
x=0

=
128

n2π2
cosnπ

Example 19.1.25. Find f(x) if its finite sine transform is given by

f s(s) =
1− cos sπ

s2π2
, where 0 < x < π, s = 1, 2, 3, . . .

Solution: We know that

f(x) =
2

l

∞∑
n=1

fs(n) sin
nπx

l
.

In our case this becomes

f(x) =
2

π

∞∑
s=1

fs(s) sin
(sπx

π

)
=

2

π

∞∑
s=1

1− cos sπ

s2π2
sin sx

⇒ f(x) =
2

π3

∞∑
s=1

(
1− cosπs

s2

)
sinxs.

Exercise 19.1.26. (i) Find the finite cosine transform of
(
1− x

π

)2
. Answer: fc(s) =

{
π
3 , s = 0
2

πs2
, s = 1, 2, 3, . . .

(ii) Show that the finite sine transform of x
π is (−1)s+1 1

s

(iii) When f(x) = sinmx, where, m is a positive integer, show that fs(p) =
{

0, p ̸= m
π
2 , p = m

(iv) If fs(n) = 2π (−1)n−1

n2 , n = 1, 2, 3, . . . where 0 < x < π, then find f(x). Answer: 2
s sin

sπ
2 , s > 0

(v) Find the finite cosine transform of f(x) if f(x) =
{

1, 0 < x < π
2

−1, π
2 < x < π

(vi) Show that fc

{
x2

2π
− π

6

}
=

{
0, n = 0
(−1)n/n2, n = 1, 2, 3, . . .
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Unit 20

Course Structure

• Hankel Transform, inversion formula and Finite Hankel transform, solution of two-dimensional Laplace
and one-dimensional diffusion & wave equation by integral transform.

20.1 Introduction

Hankel transforms are integral transformations whose kernels are Bessel functions. They are sometimes re-
ferred to as Bessel transforms. When we are dealing with problems that show circular symmetry, Hankel
transforms may be very useful. Laplace’s partial differential equation in cylindrical coordinates can be trans-
formed into an ordinary differential equation by using the Hankel transform. Because the Hankel transform is
the two-dimensional Fourier transform of a circularly symmetric function, it plays an important role in optical
data processing.

20.1.1 Definition: Infinite Hankel Transform

The infinite Hankel transform of a function f(x), 0 < x < ∞, is defined as

H{f(x)} = f(s) =

∫ ∞

0
fn(x) · xJn(sx) dx (20.1.1)

where Jn(sx) is the Bessel function of the first kind of order n. Also here f(s) is defined as Hankel transform
of order n of the function f(x).

Remark: In the integral (20.1.1), xJn(sx) is called the Kernel of the transformation.

20.1.2 Definition: Inverse Hankel Transform

If f(s) is the infinite Hankel transform of order n of the function f(x), then we write

H{f(x)} = f(s) =

∫ ∞

0
f(x) · xJn(sx) dx. (20.1.2)
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Here f(x) is called the inverse transform of the function f(s) and we write f(x) = H−1{f(s)}. The inverse
formula for inverse Hankel Transform is

f(x) = H−1{f(s)} =

∫ ∞

0
f(s) · sJn(sx) ds. (20.1.3)

20.1.3 Some Important Results on Bessel functions

I. Bessel function of first kind:Jn(x) =
∞∑
r=0

(−1)r

r!Γ(n+ r + 1)

(x
2

)n+2r

II. Recurrence formula forJn(x) :

(i) xJ ′
n(x) = nJn(x)− xJn+1(x) (ii) xJ ′

n(x) = −nJn(x) + xJn−1(x)

(iii) 2Jn(x) = Jn−1(x)− Jn+1(x) (iv) 2nJ ′
n(x) = x[Jn−1(x) + Jn+1(x)]

(v)
d

dx

[
x−nJn(x)

]
= −x−nJn+1(x) (vi)

d

dx
[xnJn(x)] = xnJn−1(x)

III. Infinite Integrals Involving Bessel Functions

(i)

∫ ∞

0
e−axJ0(sx) dx = (a2 + s2)−1/2 (ii)

∫ ∞

0
e−axJ1(sx) dx =

1

s
− a

s(a2 + s2)1/2

(iii)

∫ ∞

0
xe−axJ0(sx) dx = a(a2 + s2)−3/2 (iv)

∫ ∞

0
e−axJ1(sx) dx = s(a2 + s2)−3/2

(v)

∫ ∞

0

e−ax

x
J1(sx) dx =

(a2 + s2)1/2 − a

s

Theorem: If f(x) and g(x) are two functions and a, b two constants, then

H{af(x) + bg(x)} = aH{f(x)}+ bH{g(x)}

Proof:

H{af(x) + bg(x)} =

∫ ∞

0
x[af(x) + bg(x)]Jn(sx) dx

= a

∫ ∞

0
xf(x)Jn(sx) dx + b

∫ ∞

0
xg(x)Jn(sx) dx

= aH{f(x)}+ bH{g(x)}

Theorem: If H{f(x)} = f(s), then H{f(ax)} = 1
a2
f
(
s
a

)
, a being a constant.

Proof: Let H{f(x)} = f(s). Then

H{f(ax)} =

∫ ∞

0
xf(ax)Jn(sx) dx

=

∫ ∞

0

y

a
f(y)Jn

(sy
a

) dy

a
, where ax = y

=
1

a2

∫ ∞

0
yf(y)Jn

(s
a
y
)

dy

=
1

a2
f
(s
a

)
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Theorem: Hankel transform of the derivatives of a function

Let f(s) be the Hankel transform of order n of the function f(x) and f ′
n(s) is the transform of f ′(x). Then

f ′
n(s) = − s

2n

[
(n+ 1)fn−1(s)− (n− 1)fn+1(s)

]
.

Proof:

fn(s) =

∫ ∞

0
xf(x)Jn(sx) dx

and f ′
n(s) =

∫ ∞

0
x
df

dx
Jn(sx) dx ⇒ f ′

n(s) =

∫ ∞

0

df

dx
[xJn(sx)] dx

Integrating by parts and assuming that x f(x) → 0 as x → 0 and x f(x) → 0 as x → ∞, we obtain

f ′
n(s) =

[
f(x) · xJn(sx)

]∞
0

−
∫ ∞

0
f(x) · d

dx
[xJn(sx)] dx

= 0−
∫ ∞

0
f(x) [Jn(sx) + sx J ′

n(sx)] dx (20.1.4)

But xJ ′
n(x) = −nJn(x) + xJn−1(x). Replacing x by sx, we get

sxJ ′
n(sx) = −nJn(sx) + sxJn−1(sx)

⇒ sxJ ′
n(sx) + Jn(sx) = (1− n)Jn(sx) + sxJn−1(sx)

Using this in Eq.(20.1.4), we have

f ′
n(sx) = −

∫ ∞

0
f(x)

[
(1− n)Jn(sx) + sxJn−1(sx)

]
dx

⇒ f ′
n(sx) = −(1− n)

∫ ∞

0
f(x)Jn(sx) dx− s

∫ ∞

0
xf(x)Jn−1(sx) dx

⇒ f ′
n(sx) = −(1− n)

∫ ∞

0
f(x)Jn(sx) dx− sfn−1(s) (20.1.5)

We know from Recurrence formula for Jn(x), that

2nJn(x) = x
[
Jn−1(x) + Jn+1(x)

]
Replacing x by sx, we have

2nJn(sx) = sx
[
Jn−1(sx) + Jn+1(sx)

]
Multiplying this by f(x) and then integrating, we obtain

∞
2n

∫
f(x)Jsx dx = s

0

[∫ ∞
xf(x)Jn

0
−1(sx) dx+

∫ ∞
xf(x)Jn+1(sx) dx

0

]
= s fn−1(s) + fn+1(s)
[ ]

⇒
∫ ∞

0
f(x)Jn(sx) dx =

s

2n

[
fn−1(s) + fn+1(s)

]
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In this event Eq.(20.1.5) becomes

f ′
n(s) = −(1− n)s

2n

[
fn−1(s) + fn+1(s)

]
− sfn−1(s)

⇒ f ′
n(s) =

s

2n

[
(n− 1)fn−1(s) + (n− 1)fn+1 − 2nfn+1(s)

]
⇒ f ′

n(s) =
s

2n

[
− (n+ 1)fn−1(s) + (n− 1)fn+1

]
⇒ f ′

n(s) = − s

2n

[
(n+ 1)fn−1(s)− (n− 1)fn+1(s)

]
(20.1.6)

Remark 1. When n = 1, from Eq.(20.1.6) we have

f ′
1(s) = −sf0(s)

⇒ H{f ′(x), n = 1} = −sH{f(x), n = 0}

Remark 2. When n = 2, from Eq.(20.1.6) we have

f ′
2(s) = −s

4

[
3f1(s)− f3(s)

]
Remark 3. When n = 3, from Eq.(20.1.6) we have

f ′
3(s) = −s

6

[
4f2(s)− 2f4(s)

]
Result 1. Prove that

f ′′
n(s) =

s2

4

[(
n+ 1

n− 1

)
fn−2(s)− 2

(
n2 − 3

n2 − 1

)
fn(s) +

(
n− 1

n+ 1

)
fn+2(s)

]
.

Proof: From Eq.(20.1.6) we have

f ′
n(s) = −s

[(
n+ 1

2n

)
fn−1(s)−

(
n− 1

2n

)
fn+1(s)

]
(20.1.7)

Replacing f by f ′, we get

f ′′
n(s) = −s

[(
n+ 1

2n

)
f ′

n−1(s)−
(
n− 1

2n

)
f ′

n+1(s)

]
(20.1.8)

Replacing n by (n− 1), and (n+ 1) respectively in Eq.(20.1.7), we get

f ′
n−1(s) = −s

[(
n

2(n− 1)

)
fn−2(s)−

(
n− 2

2(n− 1)

)
fn(s)

]
f ′

n+1(s) = −s

[(
n+ 2

2(n+ 1)

)
fn(s)−

(
n

2(n+ 1)

)
fn+2(s)

]
Writing Eq.(20.1.8) with the help of these two equations, we obtain

f ′′
n(s) =

s2

4

[(
n+ 1

n

){
n

n− 1
fn−2(s)−

n− 2

n− 1
fn(s)

}
−
(
n− 1

n

){(
n+ 2

n+ 1

)
fn(s)

n−
(
n+ 1

)
fn+2(s)

}]
s2
[(

n+ 1 n
=

)
) 2

(
2

fn 2(s
− 3

)
n 1

fn(s) +
−

f (s) .
4 n− 1 − n2 − 1

(
n+ 1

)
n+2

]
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Example: Find the Hankel transform of df
dx , when f = e−ax

x and n = 1.

Solution: Let f(x) = e−ax

x . To determine H
{

df
dx , n = 1

}
= f

′
1(s), we know that

f
′
1(s) = −sf0(s) = −s

∫ ∞

0
xf(x)J0(sx) dx

= −s

∫ ∞

0
x
e−ax

x
J0(sx) dx

= −s

∫ ∞

0
e−axJ0(sx) dx

= −s(a2 + s2)−1/2.

Example: Find the Hankel transform of x−2e−x of order one.

Solution:

H{x−2e−x, n = 1} =

∫ ∞

0
x−2e−xxJ1(sx) dx

=

∫ ∞

0

e−x

x
J1(sx) dx =

(1 + s2)1/2 − 1

s
.

Example: Evaluate H−1{s−2eas} when n = 1, that is, find out inverse Hankel transform of s−2e−as of
order one.

Solution:

H−1{s−2eas, n = 1} =

∫ ∞

0
s−2e−assJ1(sx) ds

=

∫ ∞

0

e−as

s
J1(sx) ds

=
(a2 + x2)1/2 − a

x

Example: Find the Hankel transformation of

f(x) =

{
1 0 < x < a, n = 0,
0 x > a, n = 0.

Solution:

H{f(x), n = 0} =

∫ ∞

0
f(x) · xJ0(sx) dx

=

∫ a

0
f(x) · xJ0(sx) dx+

∫ ∞

0
f(x) · xJ0(sx) dx

=

∫ a

0
1 · xJ0(sx) dx+

∫ ∞

0
0 · xJ0(sx) dx

=

∫ a

0
xJ0(sx) dx (20.1.9)

By Recurrence formula for Bessel’s function, we have

d

dx
{xnJn(x)} = xnJn−1(x).
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Replacing n and x by 1 and sx respectively,

d

s dx
{sxJ1(sx)} = sxJ0(sx)

⇒ d

dx
{xJ1(sx)} = sxJ0(sx).

Integrating this form x = 0 to x = a,[
xJ1(sx)

]a
0
= s

∫ a

0
xJ0(sx) dx ⇒

∫ a

0
xJ0(sx) dx =

a

s
J1(sa). (20.1.10)

Now using Eq.(20.1.10) in Eq.(20.1.9) we obtain

H{f(x), n = 0} =
a

s
J1(sa)

Exercise 20.1.1. (i) Find the Fourier transform of F (x) =

{
(1− x2), |x| < 1
0 |x| > 1.

and hence evaluate
∫∞
0

(
x cosx−sinx

x3

)
cos
(
x
2

)
dx. Answer: f(s) = 4

s3
(sin s−s cos s);−3π

16 .

20.1.4 Finite Hankel Transform

Definition 20.1.2. Finite Hankel Transform: If f(x) satisfies Dirichlet’s conditions in the closed interval
[0, a], then its finite Hankel transform f(si) of order n is given by

f(si) =

∫ a

0
f(x) · xJn(xsi) dx, (20.1.11)

where a is positive root of the transcendental equation

Jn(asi) = 0 (20.1.12)

If the function f(x) is continuous at any point of the interval [0, a], then the inversion formula for f(si) is

f(x) =
2

a2

∑
i

f(si)
Jn(xsi

[J ′
n(aci)]

2
(20.1.13)

where the sum is taken over all the positive roots of the Eq.(20.1.12). If f(x) is represented by generalised
Fourier Bessel series

f(x) =
∑
i

ciJn(xsi), 0 ≤ x ≤ a, (20.1.14)

then the coefficient ci is given by

ci =
2

a2J2
n+1(asi)

∫ a

0
f(x) · xJn(xsi) dx

=
2f

a2[Jn+1(asi)]2
=

2f(si)

a2[J ′
n(asi)]

2
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The recurrence formula,

xJ ′
n(x) = nJn(x)− xJn+1(x).

∴ asiJ
′
n(asi) = nJn(asi)− asiJn+1(asi), [Replacing x by asi]

⇒ asiJ
′
n(asi) = −asiJn+1(asi) [Using (20.1.12)]

⇒ J ′
n(asi) = −Jn+1(asi).

Consequently,

f(x) =
2

a2

∑
i

f(si)
Jn(xsi)

[Jn+1(asi)]2

Remark 20.1.3. It has been found in practice that the choice of unity as the upper limit of the integral defining
the transform is more convenient. Therefore the definition of finite Hankel transform becomes

f(si) =

∫ 1

0
f(x) · xJn(xsi) dx

Theorem 20.1.4. Finite Hankel transform of df
dx , i.e.,

Hn

(
df

dx

)
=

a∫
0

df

dx
xJn(sx) dx,

where s is any root of Jn(sa) = 0. To show that

Hn

{
df

dx

}
=

s

2n
[(n− 1)Hn+1{f(x)} − (n+ 1)Hn−1{f(x)}]

Proof. The finite Hankel transform of df
dx of order n is denoted by Hn

{
df
dx

}
.

Hn

{
df

dx

}
=

a∫
0

df

dx
· xJn(sx) dx

=
[
f(x) · xJn(sx)

]x=a

x=0
−

a∫
0

f(x) · d

dx
{xJn(sx)} dx

= −
a∫

0

f(x)
d

dx
{xJn(sx)} dx (20.1.15)

By Recurrence formula,

2J ′
n(x) = Jn−1(x)− Jn+1(x) and 2nJn(x) = x[Jn−1(x) + Jn+1(x)]

Replacing x by sx in both equations,

2J ′
n(sx) = Jn−1(sx)− Jn+1(sx) and 2nJn(sx) = sx[Jn−1(sx) + Jn+1(sx)]

Now
d

dx
{xJn(sx)} = Jn(sx) + sxJ ′

n(sx)

=
sx

2n
[Jn−1(sx) + Jn+1(sx)] +

sx

2
[Jn−1(sx)− Jn+1(sx)]

=
sx

2n
[Jn−1(sx) · (1 + n) + (1− n)Jn+1(sx)]
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Now from Eq.(20.1.15) we have

Hn

{
df

dx

}
= −

a∫
0

f(x) · sx
2n

[Jn−1(sx) · (n− 1) + (1− n)Jn+1(sx)]

= − s

2n

a∫
0

[f(x) · xJn−1(sx) · (1 + n)− (n− 1)f(x)xJn+1(sx)]dx

=
s

2n
[(n− 1)Hn+1{f(x)} − (1 + n)Hn−1{f(x)}]

Corollary 20.1.5. If n = 1, the the last gives

H1

{
df

dx

}
=

s

2
[0− 2H0{f(x)}] = −sH0{f(x)}

Theorem 20.1.6.

H

{
d2f

dx2
+

1

x

df

dx

}
=

s

2n

[
−Hn−1

{
df

dx

}
+Hn+1

{
df

dx

}]
H

{
d2f

dx2
+

1

x

df

dx
− n2

x2
f

}
= −sa f(a)J ′

n(sa)− s2Hn{f(x)}

Proof. Proof of the above theorems are left as exercise.

Example 20.1.7. Show that
H0(c) =

ca

s
J1(as)

Solution:

H0{c} =

a∫
0

cxJ0(sx) dx = c

a∫
0

xJ0(sx) dx (20.1.16)

By recurrence formula No. (vi), we know that

d

dx
[xnJn(x)] = xnJn−1(x).

Putting n = 1,
d

dx
[xJ1(x)] = xJ0(x).

Replacing x by sx,we have
d

s dx
[sxJ1(sx)] = sxJ0(sx)

⇒ d

dx
{xJ1(sx)} = sxJ0(sx).

Using this in (20.1.16), we get

H0{c} =
c

s

a∫
0

d

dx
{xJ1(sx)} =

c

s

[
xJ1(sx)

]∞
0

=
ca

s
J1(sa).

Example 20.1.8. Find finite Hankel transform of x2 if xJ0(sx) is the Kernel of the transform.
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Solution: By recurrence formula No. (iv) and (vi) we have

2nJn(x) = x[Jn−1(x) + Jn+1(x)] and
d

dx
[xnJn(x)] = xnJn−1(x)

Replacing x by sx, we have
2nJn(sx) = sx[Jn−1(sx) + Jn+1(sx)] (20.1.17)

d

s dx
[xnJn(sx)] = xnJn−1(sx). (20.1.18)

Now

H0{x2} =

a∫
0

x2 · xJ0(sx) dx =

a∫
0

x2 · d

s dx
{xJ1(sx)}dx, according to (20.1.18)

Integrating by parts, we obtain

H0{x2} =
1

s

[
x2 · xJ1(sx)

]a
0
− 1

s

a∫
0

2x · xJ1(sx) dx

=
a3

s
J1(sa)−

2

s

a∫
0

x2J1(sx) dx

=
a3

s
J1(sa)−

2

s

a∫
0

d

s dx
[x2J2(sx)] dx, [according to (20.1.18)]

=
a3

s
J1(sa)−

2

s2

[
x2J2(sx)

]a
0

=
a3

s
J1(sa)−

2a2

s2
J2(sa). (20.1.19)

Putting n = 1, x = a in (20.1.17), we have

2J1(sa) = sa[J0(sa) + J2(sa)] ⇒ 2

sa
J1(sa)− J0(sa) = J2(sa).

Putting this in Eq.(20.1.19), we obtain

H0{x2} =
a2

s
J1(sa)−

2a2

s2

[
2

sa
J1(sa)− J0(sa)

]
=

a3

s
J1(sa)−

4a2

s3a
J1(sa) +

2a2

s2
J0(sa)

=
a2

s2

[(
as− 4

as

)
J1(sa) + 2J0(sa)

]
Example 20.1.9. Find the finite Hankel transform of

1

r

∂

∂r

(
r
∂V

∂r

)
− n2V

r2
, where V =

{
0 when r = 0
V1 when r = 1.
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Solution: From the problem it is clear that we should take the limits x = 0 and x = 1 of the transform.

Let f(r) =
1

r

∂

∂r

(
r
∂V

∂r

)
− n2V

r2

Then f(r) is expressible as

f(r) =
1

r

(
∂V

∂r
+ r

∂2V

∂r2

)
− n2V

r2

=
∂2V

∂r2
+

1

r

∂V

∂r
− n2V

r2
. (20.1.20)

By Theorem 15.6, we can write

Hn{f(r)} = −sf(1)J ′
n(s)− s2Hn{f} = −sV1J

′
n(s)− s2Hn{f}

Exercise 20.1.10. (i) Find the finite Hankel transform of xn, (n > −1) if xJn(sx) is the Kernel of the
transform. Answer: Hn{xn} = an+1

s Jn+1(sa).
(ii) Find the finite Hankel transform of (1− x2), taking xJ0(sx) as the kernel.
Answer: H0{1− x2} = a

sJ1(as)−
a2

s2

[(
as− 4

as

)
J1(sa) + 2J0(sa)

]
(iii) Find the Hankel transform of (a2 − x2) if xJ0(sx) is the kernel of the transform.
Answer: H0{a2 − x2} = 4a

s3
J1(sa)− 2a2

s2
J0(sa)

(iv) Show that
a∫

0

r3J0{pr} dr =
a2

p2

[
2J0(pa) +

(
ap− 4

ap
J1(pa)

)]

20.2 Laplace transforms and Fourier transforms to solve some partial differ-
ential equations

The given partial differential equations are given along with certain prescribed conditions on the functions
which arise from the physical situation. The conditions which are given at t = 0 are known as initial condi-
tions whereas the conditions given at the boundary of the region or interval are called boundary conditions.
Most of the well known partial differential equations like Laplace equation, Heat equation and Wave equation
can be solved by using the method of integral transform. Readers are suggested to familiar with the following
important partial differential equations.

1. One dimensional heat conduction or diffusion equation:

∂u

∂t
= k

∂2u

∂x2
, 0 < x < ∞, t > 0

Here u(x, t) is the temperature in a solid at position x at time t. The constant k is called the diffusivity of the
material of the solid. Again k = K/σρ, where the thermal conductivity K, the specific heat σ and the density
ρ are assumed constant. The amount of heat per unit area per unit time conducted across a plane is given by
−K ux(x, t).
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2. One dimensional wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
, x > 0, t > 0

This equation is applicable to the small transverse vibrations of a taut flexible string initially located on the
x−axis and set into motion. Here u(x, t) is the transverse displacement of the string at any time t. Again,
c2 = T/ρ, where T is constant tension in the string and ρ is constant mass per unit length of the string.

3. Two dimensional Laplace’s equation:

∂2u

∂x2
+

∂2u

∂y2
= 0

We can solve one dimensional heat and wave equation by the method of Laplace transform as well as Fourier
transform while only Fourier transform method is used to solved boundary value problem governed by Laplace
equation.

20.2.1 Solution of two dimensional Laplace Equation using Finite Fourier Transform (FFT)

In this subsection, we will solve the two dimensional Laplace equation over a finite region using the finite
Fourier transform. Let us begin with the following example. For infinite or semi infinite range, one may use
infinite cosine or sine transform.

Example 20.2.1. Determine a function V (x, y) which is harmonic in the open square 0 < x < π, 0 < y < π,
takes a constant value V0 on the edge y = π and vanishes on the other edges of the square.

or

Find the steady temperature V (x, y) in a long square bar of side π when one face is kept at constant tempera-
ture V0 and the other faces at zero temperature. Also V (x, y) is bounded.

Solution: The steady temperature V (x, y) is governed by the Laplace equation (since V is harmonic)

∂2V

∂x2
+

∂2V

∂y2
= 0 (20.2.1)

with the conditions (i) V (x, π) = V0, (ii) V (0, y) = 0 = V (π, y) for every y and (iii) V (x, y) is bounded.
Taking finite Fourier sine transform of Eq. (20.2.1), we have

π∫
0

∂2V

∂x2
sin sx dx+

π∫
0

∂2V

∂y2
sin sx dx = 0

⇒
[
∂V

∂x
sin sx

]π
0

− s

∫
∂V

∂x
cos sx dx+

∂2

∂y2

π∫
0

V sin sx dx = 0

⇒ d2Vs

dy2
+ 0− s

(V cos sx
)π
0
+ s

π∫
0

V sin sx dx

 = 0

⇒ d2Vs

dy2
− s2Vs − s

[
V (π, y) cos sπ − V (0, y) cos 0

]
= 0

⇒ d2Vs

dy2
− s2Vs − s

[
V (π, y) cos sπ − V (0, y) cos 0

]
= 0

⇒ d2Vs

dy2
− s2Vs = 0 [using boundary condition (ii)]
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The solution of this equation is
Vs = A cosh sy +B sinh sy. (20.2.2)

Now, V (x, π) = V0 ⇒ Fs{V (x, π)} = Fs{V0}

⇒
π∫

0

V (x, π) sin sx dx =

π∫
0

V0 sin sx dx

⇒ Vs(s, π) =
V0

s

(
− cos sx

)π
0
= V0

(
1− cos sπ

s

)
∴ Vs(s, π) = V0

1− cos sπ

s

Again, V (x, 0) = 0 ⇒ Vs(s, 0) = 0

⇒ A · 1 +B · 0 = 0 [Using Eq.(20.2.2)]

⇒ A = 0

∴ From Eq. (20.2.2), we have Vs = B sinh sy, (20.2.3)

⇒ Vs(s, π) = B sinh(sπ)

⇒ V0

(
1− cos sπ

s

)
= B sinh sπ

⇒ B = V0
1− cos sπ

s sinh sπ

Now Eq.(20.2.3) takes the form

Vs =
V0

s

(1− cos sπ)

sinh sπ
sinh(sy)

Taking inverse finite sine transform, we obtain

V (x, y) =
2

π

∞∑
s=1

V0(1− cos sπ) sinh sy sin sx

s sinh sπ

=
2V0

π

∞∑
s=1

[1− (−1)s] sinh sy sin sx

s sinh sπ

=
4V0

π

∞∑
n=0

sinh(2n+ 1)y · sin(2n+ 1)x

(2n+ 1) sinh(2n+ 1)π
.

Example 20.2.2. Use a cosine transform to show that the steady temperature in the semi-infinite solid y > 0
when the temperature on the surface y = 0 is kept at unity over the strip |x| < a and at zero outside the strip,
is

1

π

[
tan−1

(
a+ x

y

)
+ tan−1

(
a− x

y

)]

The result

∞∫
0

e−sxx−1 sin rx dx = tan−1 r

s
, r > 0, s > 0 may be assumed.

DIFFERENTIAL EQUATIONS
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Solution: We know that the steady temperature in the semi-infinite solid is represented by two-dimensional
Laplace equation

∂2U

∂x2
+

∂2U

∂y2
= 0 0 < y < ∞, −∞ < x < ∞ (20.2.4)

subject to the boundary conditions:

U(x, 0) = 1, |x| < a i.e. − a < x < a (20.2.5)

U(x, 0) = 1, x < −a or x > a (20.2.6)

Taking the Fourier cosine transform of (20.2.4), we get

∞∫
0

∂2U

∂x2
cos sx dx+

∞∫
0

∂2U

∂y2
cos sx dx = 0

⇒
[
∂U

∂x
cos sx

]∞
0

−
∞∫
0

∂U

∂x
(−s sin sx) dx+

d2

dy2

∞∫
0

U(x, y) cos sx dx = 0

⇒ s

∞∫
0

∂U

∂x
sin sx dx+

d2Uc

dy2
= 0, where Uc(s, y) =

∞∫
0

U(x, y) cos sx dx

[
∵ due to symmetry,

∂U

∂x
→ 0 as x → ∞ and

∂U

∂x
→ 0 as x → 0.

]

⇒ s

[U(x, y) sin sx]∞0 −
∞∫
0

U(x, y) s cos sx dx

+
d2Uc

dy2
= 0

⇒ −s2Uc +
d2Uc

dy2
= 0 if U(x, y) → 0 as x → ∞

⇒ (D2 − s2)Uc = 0 where D ≡ d

dy

whose general solution is

Uc(s, y) = C1e
sy + C2e

−sy, C1 and C2 being arbitrary constants. (20.2.7)

Since Uc(s, y) is finite, we must take C1 = 0 in (20.2.7), otherwise Uc(s, y) would become infinite as y → ∞.
Hence (20.2.7) reduces to

Uc(s, y) = C2e
−sy (20.2.8)

Again

∞∫
0

U(x, 0) cos sx dx =

a∫
0

U(x, 0) cos sx dx+

∞∫
a

U(x, 0) cos sx dx

⇒ Uc(s, 0) =

a∫
0

cos sx dx =
sin sa

s
= C2 (20.2.9)

Hence from (20.2.8), we finally find

Uc(s, y) =
sin sa

s
e−sy (20.2.10)
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Now taking the inverse Fourier cosine transform, we get

U(x, y) =
2

π

∞∫
0

sin sa

s
e−sy cos sx ds =

1

π

∞∫
0

e−sy

s

[
sin(a+ x)s+ sin(a− x)s

]
ds

=
1

π

[
tan−1

(
a+ x

y

)
+ tan−1

(
a− x

y

)]

Exercise 20.2.3. (i) Using the finite Fourier transform, solve
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < π, 0 < y < y0 subject

to u(0, y) = 0, u(π, y) = 1, uy(x, 0) = 0, u(x, y0) = 0 Answer: u(x, y) =
2

π
+
2

π

∞∑
n=1

(−1)n

n

coshny

coshny0
sinnx

(ii) Solve the boundary value problem in the half-plane y > 0, described by
∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x <

∞, y > 0 subject to u(x, 0) = f(x), − ∞ < x < ∞, u is bounded as y → ∞, u and
∂u

∂x
both vanish as

|x| → ∞. Answer: u(x, y) =
y

π

π∫
−π

f(ξ)

(ξ − x)2 + y2
dξ

(iii) Solve the boundary value problem in the half-plane x > 0, described by
∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < y <

∞, x > 0 subject to u(0, y) = f(y), − ∞ < y < ∞, u is bounded as x → ∞, u and
∂u

∂y
both vanish as

|y| → ∞. Answer: u(x, y) =
x

π

π∫
−π

f(ξ)

x2 + (y − ξ)2
dξ

20.2.2 Application to Heat Conduction and Wave Equations

Formulae for Laplace transform method

In order to solve heat equation using the method of Laplace transform, the following results will be used
frequently

L{u(x, t)} = u(x, s)

L

{
∂u

∂x

}
=

du

dx
, L

{
∂2u

∂x2

}
=

d2u

dx2
,

L

{
∂u

∂t

}
= su− u(x, 0)

L

{
∂2u

∂t2

}
= s2u− s u(x, 0)− ut(x, 0).

Example 20.2.4. Find the temperature u(x, t) in a slab whose ends x = 0 and x = a are kept at temperature
zero and whose initial temperature is sin(πx/a).

Solution: We have to solve one-dimensional heat conduction equation

∂u

∂t
= k

∂2u

∂x2
, 0 < x < a, t > 0, (20.2.11)

DIFFERENTIAL EQUATIONS
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u(x, t) being the temperature in the slab at any point x at any time t and k being the diffusivity of the material
of the bar, subject to the boundary conditions u(0, t) = 0, u(a, t) = 0 and initial condition u(x, 0) =
sin(πx/a). Let L{u(x, t)} = u(x, s). Taking the Laplace transform of both sides of (20.2.11), we have

L

{
∂u

∂t

}
= kL

{
∂2u

∂x2

}
⇒ su(x, s)− u(x, 0) = k

d2u

dx2

⇒ su− sin
(πx

a

)
= k

d2u

dx2
⇒

(
D2 − s

k

)
u = −1

k
sin

πx

a

Calculating the complementary function corresponding to the homogeneous part and the particular solution
using classical methods of ordinary differential equations, we may write the general solution of the aforesaid
ODE as

u(x, s) = c1e
x
√

s/k + c1e
−x

√
s/k +

1

s+ (π2k/a2)
sin

πx

a
. (20.2.12)

Taking the Laplace transform of boundary conditions, we have

u(0, s) = 0 and u(a, s) = 0 (20.2.13)

Now using the conditions (20.2.13) in (20.2.2), we obtain c1 = c2 = 0 and therefore (20.2.2) reduces to

u(x, s) =
sin(πx/a)

s+ (π2k/a2)
so that u(x, t) = sin

πx

a
L−1

{
1

s+ (π2k/a2)

}
= sin

πx

a
e−(π2kt/a2)

Example 20.2.5. The faces x = 0 and x = 1 of a slab of material for which k = 1 are kept at temperature 0
and 1 respectively until the temperature distribution becomes u = x. After time t = 0 both faces are held at
temperature 0. Determine the temperature formula. It is given that

L−1

{
sinhx

√
s

s sinh a
√
s

}
=

x

a
+

2

π

∞∑
n=1

(−1)n

n
e−n2π2t/a2 sin

(nπx
a

)
.

Solution: The temperature u(x, t) in the slab is governed by the partial differential equation

∂u

∂t
=

∂2u

∂x2
(20.2.14)

with the boundary conditions (i) u(0, t) = 0, (ii) u(1, t) = 0, (iii) u(x, 0) = x. From Eq. (20.2.14)
we have

L

{
∂u

∂t

}
= L

{
∂2u

∂x2

}
⇒ s u− u(x, 0) =

d2u

dx2

⇒ d2u

dx2
− s u = −x [∵ u(x, 0) = x]

⇒ (D2 − s)u = −x

The solution of it is

u = a e−x
√
s + b ex

√
s +

1

D2 − s
(−x)

= a e−x
√
s + b ex

√
s +

1

s

(
1− D2

s

)−1

x

= a e−x
√
s + b ex

√
s +

x

s
.
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It is also expressed as
u = a coshx

√
s+ b sinhx

√
s+

x

s
.

Now
(i) ⇒ L{u(0, t)} = 0 ⇒ u(0, s) = 0 ⇒ a = 0

Hence,

u = b sinhx
√
s+

x

s
.

(ii) ⇒ L{u(1, t)} = 0 ⇒ u(1, s) = 0 ⇒ 0 = b sinh
√
s+

1

s
⇒ b = − 1

s sinh
√
s

Using this we obtain

u =
x

s
− sinhx

√
s

s sinh
√
s

⇒ u = L−1
{x
s

}
− L−1

{
sinhx

√
s

s sinh
√
s

}
⇒ u = x−

[
x+

2

π

∞∑
n=1

(−1)n

n
e−n2π2t sin(nπx)

]

⇒ u = − 2

π

∞∑
n=1

(−1)n

n
e−n2π2t sin(nπx)

Example 20.2.6. Solve the wave equation
∂2u

∂t2
+ c2

∂2u

∂x2
, x > 0, t > 0, where u(x, 0) = 0, ut(x, 0) =

0, x > 0 and u(0, t) = F (t). lim
x→∞

u(x, t) = 0, t > 0.

Solution: We have to solve one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(20.2.15)

subject to boundary condition: u(0, t) = F (t), lim
x→∞

u(x, t) = 0

and initial conditions: u(x, 0) = 0, ut(x, 0) = 0.
Let L{u(x, t)} = u(x, s). Applying Laplace transform to Eq.(20.2.15), we have

s2u(x, s)− su(x, 0)− ut(x, 0) = c2
d2u

dx2
⇒ d2u

dx2
− s2

c2
u = 0

Its solution is
u(x, s) = c1 e

sx/c + c2 e
−sx/c, c1, c2 being the arbitrary constants

Now using the above boundary conditions we have u(0, s) = f(s) where f(s) = L{F (t)} and u(x, s) = 0
as x → ∞. Since u(x, s) = 0 as x → ∞, we must choose c1 = 0. Hence the solution reduces to

u(x, s) = c2 e
−sx/c

Putting x = 0 in the above equation and using u(0, s) = f(s), we get c2 = f(s). Then the solution reduces
to

u(x, s) = f(s) e−sx/c

DIFFERENTIAL EQUATIONS
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Taking inverse Laplace transform, we obtain

u(x, t) = L−1{f(s) e−sx/c} = F (t− x/c)H(t− x/c)

where H(t− x/c) is the Heaviside unit step function.

Exercise 20.2.7. (i) A string is stretched between two fixed points (0, 0) and (a, 0). If it is displaced into the
curve u = b sin(πx/a) and released from rest in that position at time t = 0, find its displacement at any time

t < 0 and at any point 0 < x < a. Answer: u(x, t) = b sin
πx

a
cos

πct

a

(ii) Solve the boundary value problem
∂2u

∂t2
= a2

∂2u

∂x2
− g, x > 0, t > 0 with the boundary conditions

u(x, 0) = 0 = ut(x, 0), x > 0; u(0, t) = 0, lim
x→∞

ux(x, t) = 0, t ≥ 0.

Answer: u(x, t) =
1

2
g(t− x/a)2H(t− x/a)− 1

2
gt2
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